

# **Prasugrel Hydrochloride**

Type of PostingRevision BulletinPosting Date28-Sep-2018Official Date01-Oct-2018

**Expert Committee** Chemical Medicines Monographs 2

Reason for Revision Compliance

In accordance with the Rules and Procedures of the 2015–2020 Council of Experts, the Chemical Medicines Monographs 2 Expert Committee has revised the Prasugrel Hydrochloride monograph. The purpose of this revision is to widen the acceptance criteria for *Water Determination* <921> from NMT 0.2% to NMT 0.50% to be consistent with the FDA-approved drug products.

The Prasugrel Hydrochloride Revision Bulletin supersedes the Prasugrel Hydrochloride monograph which is becoming official in the *First Supplement to USP 41–NF 36*.

Should you have any questions, please contact Donald Min, Ph.D., Senior Scientific Liaison to the Chemical Medicines Monographs 2 Expert Committee (301-230-7457 or <a href="mailto:ddm@usp.org">ddm@usp.org</a>).

# Add the following:

# **^Prasugrel Hydrochloride**

 $C_{20}H_{20}FNO_3S \cdot HCI$ 

409.90

Ethanone, 2-[2-(acetyloxy)-6,7-dihydrothieno[3,2-c] pyridin-5(4*H*)-yl]-1-cyclopropyl-2-(2-fluorophenyl)-, hydrochloride;

5-[2-Cyclopropyl-1-(2-fluorophenyl)-2-oxoethyl]-4,5,6,7-tetrahydrothieno[3,2-*c*]pyridin-2-yl acetate hydrochloride [389574-19-0].

#### **DEFINITION**

Prasugrel Hydrochloride contains NLT 97.0% and NMT 102.0% of prasugrel hydrochloride (C<sub>20</sub>H<sub>20</sub>FNO<sub>3</sub>S·HCl), calculated on the anhydrous and solvent-free basis.

#### **IDENTIFICATION**

- A. INFRARED ABSORPTION (197): [NOTE—Methods described in (197K) or (197A) may be used.]
- **B.** The retention time of the prasugrel peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the *Assay*.
- C. IDENTIFICATION TESTS—GENERAL (191), Chemical Identification Tests, Chloride: Meets the requirements

#### **ASSAY**

#### • PROCEDURE

**Buffer:** 10 mM monobasic potassium phosphate in water. Adjust with phosphoric acid to a pH of 2.8.

Mobile phase: Acetonitrile and Buffer (35:65)

Diluent: Acetonitrile and water (70:30)

Standard solution: 0.1 mg/mL of USP Prasugrel

Hydrochloride RS in *Diluent* 

**Sample solution:** 0.1 mg/mL of Prasugrel Hydrochloride

in Diluent

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 260 nm

Column: 4.6-mm × 15-cm; 5-µm packing L1

Column temperature: 40° Flow rate: 1 mL/min Injection volume: 10 µL

Injection volume: 10  $\mu L$  Run time: NLT 2.5 times the retention time of prasugrel

System suitability

Sample: Standard solution
Suitability requirements
Tailing factor: NMT 2.0%

Relative standard deviation: NMT 1.0%

Analysis

**Samples:** Standard solution and Sample solution Calculate the percentage of prasugrel hydrochloride  $(C_{20}H_{20}FNO_3S \cdot HCI)$  in the portion of Prasugrel Hydrochloride taken:

Result = 
$$(r_U/r_S) \times (C_S/C_U) \times 100$$

 $r_U$  = peak response of prasugrel from the Sample solution

r<sub>s</sub> = peak response of prasugrel from the Standard solution

C<sub>s</sub> = concentration of USP Prasugrel Hydrochloride RS in the *Standard solution* (mg/mL) C<sub>U</sub> = concentration of Prasugrel Hydrochloride in the Sample solution (mg/mL)

**Acceptance criteria:** 97.0%–102.0% on the anhydrous and solvent-free basis

#### **IMPURITIES**

• RESIDUE ON IGNITION (281): NMT 0.2%

• ORGANIC IMPURITIES, PROCEDURE 1

**Buffer:** 10 mM monobasic potassium phosphate in water **Mobile phase:** Acetonitrile, tetrahydrofuran, and *Buffer* (10:25:65)

Diluent: Acetonitrile and water (70:30)

Solution A: 150 µL of piperidine in 50 mL of acetonitrile System suitability stock solution: 0.1 mg/mL of USP Prasugrel Hydrochloride RS in *Diluent* prepared as follows. Transfer 5 mg of USP Prasugrel Hydrochloride RS to a 50-mL volumetric flask. Add 20 mL of *Diluent* and mix to dissolve. Add 1 mL of *Solution A* and dilute with *Diluent* to volume. Heat the solution at 50° for 1 h and cool to room temperature.

**System suitability solution:** 0.02 mg/mL of USP Prasugrel Hydrochloride RS from the *System suitability stock solution* in *Diluent* 

**Standard solution:** 0.015 mg/mL of USP Prasugrel Hydrochloride RS in *Diluent* 

Sensitivity solution: 0.3 μg/mL of USP Prasugrel Hydrochloride RS from the *Standard solution* in *Diluent* Sample solution: 1.5 mg/mL of Prasugrel Hydrochloride in *Diluent* 

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 240 nm

Column: 4.6-mm × 15-cm; 3-µm packing L1

Temperatures
Autosampler: 10°
Column: 40°
Flow rate: 0.9 mL/min
Injection volume: 10 µL

**Run time:** NLT 2 times the retention time of prasugrel

System suitability

Samples: System suitability solution, Standard solution, and Sensitivity solution

[Note—See *Table 1* for the relative retention times.]

Suitability requirements

**Resolution:** NLT 1.5 between desacetyl prasugrel diastereomer 1 and desacetyl prasugrel diastereomer 2 peaks, *System suitability solution* 

Relative standard deviation: NMT 2.0%, Standard

solution
Signal-to-noise ratio: NLT 10, Sensitivity solution

Analysis

**Samples:** Standard solution and Sample solution Calculate the percentage of each specified process impurity in the portion of Prasugrel Hydrochloride taken:

Result = 
$$(r_U/r_S) \times (C_S/C_U) \times 100$$

 $r_U$  = peak response of each specified impurity from the *Sample solution* 

r<sub>s</sub> = peak response of prasugrel from the *Standard* solution

C<sub>s</sub> = concentration of USP Prasugrel Hydrochloride RS in the *Standard solution* (mg/mL)

C<sub>U</sub> = concentration of Prasugrel Hydrochloride in the Sample solution (mg/mL)

Acceptance criteria: See Table 1.

Table 1

| Name                                               | Relative<br>Retention<br>Time | Acceptance<br>Criteria,<br>NMT (%) |  |
|----------------------------------------------------|-------------------------------|------------------------------------|--|
| Desacetyl prasugrel<br>diastereomer 1 <sup>a</sup> | 0.43                          | _                                  |  |
| Desacetyl prasugrel<br>diastereomer 2 <sup>a</sup> | 0.45                          |                                    |  |
| Desfluoro prasugrel <sup>b</sup>                   | 0.9                           | 0.20                               |  |
| Prasugrel                                          | 1.0                           | <del></del>                        |  |
| 4-Fluoro prasugrel <sup>c</sup>                    | 1.2                           | 0.15                               |  |
| 3-Fluoro prasugrel <sup>d</sup>                    | 1.3                           | 0.30                               |  |

 $<sup>^{\</sup>rm a}$ 5-[2-Cyclopropyl-1-(2-fluorophenyl)-2-oxoethyl]-5,6,7,7a-tetrahydrothieno[3,2-c]pyridin-2(4H)-one. Desacetyl prasugrel diastereomer 1 and desacetyl prasugrel diastereomer 2 are a pair of diastereomers. They are used for resolution measurement only.

# • ORGANIC IMPURITIES, PROCEDURE 2

**Buffer:** 25 mM monobasic potassium phosphate in water. Adjust with phosphoric acid to a pH of 4.0.

**Solution A:** Acetonitrile and *Buffer* (10:90) **Solution B:** Acetonitrile and water (90:10)

Solution C: 150 µL of piperidine in 50 mL of acetonitrile

Mobile phase: See Table 2.

Table 2

| Time<br>(min) | Solution A<br>(%) | Solution B<br>(%) |  |
|---------------|-------------------|-------------------|--|
| 0             | 100               | 0                 |  |
| 2             | 100               | 0                 |  |
| 30            | 0                 | 100               |  |
| 37            | 0                 | 100               |  |
| 38            | 100               | 0                 |  |
| 45            | 100               | 0                 |  |

**Diluent:** Acetonitrile and water (70:30)

System suitability solution: 0.1 mg/mL of USP Prasugrel Hydrochloride RS in *Diluent* prepared as follows. Transfer 5 mg of USP Prasugrel Hydrochloride RS to a 50-mL volumetric flask. Add 20 mL of *Diluent* and mix to dissolve. Add 1 mL of *Solution C* and dilute with *Diluent* to volume. Heat the solution at 50° for 1 h and cool to room temperature.

**Standard solution:** 0.1 mg/mL of USP Prasugrel Hydrochloride RS in *Diluent* 

Sensitivity solution: 2 μg/mL of USP Prasugrel

Hydrochloride RS from the *Standard solution* in *Diluent* **Sample solution:** 10 mg/mL of Prasugrel Hydrochloride in *Diluent* 

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 210 nm

Column: 4.6-mm × 15-cm; 4-µm packing L87

Column temperature: 45° Flow rate: 1.5 mL/min Injection volume: 5 µL

System suitability

Samples: System suitability solution, Standard solution, and Sensitivity solution

[Note—See *Table 3* for the relative retention times.]

Suitability requirements

**Resolution:** NLT 0.9 between the desacetyl prasugrel diastereomer 1 and desacetyl prasugrel diastereomer 2 peaks, *System suitability solution* 

**Relative standard deviation:** NMT 2.0%, *Standard solution* 

Signal-to-noise ratio: NLT 10, Sensitivity solution Analysis

Samples: Standard solution and Sample solution Calculate the percentage of each specified and unspecified degradation product in the portion of Prasugrel Hydrochloride taken:

Result = 
$$(r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

 $r_U$  = peak response of each degradation product from the *Sample solution* 

r<sub>s</sub> = peak response of prasugrel from the *Standard* solution

C<sub>s</sub> = concentration of USP Prasugrel Hydrochloride RS in the *Standard solution* (mg/mL)

 C<sub>U</sub> = concentration of Prasugrel Hydrochloride in the Sample solution (mg/mL)

*F* = relative response factor

Acceptance criteria: See Table 3.

Table 3

| Name                                                 | Relative<br>Retention<br>Time | Relative<br>Response<br>Factor | Acceptance<br>Criteria,<br>NMT (%) |
|------------------------------------------------------|-------------------------------|--------------------------------|------------------------------------|
| Desacetyl<br>hydroxyprasugrel <sup>a</sup>           | 0.74                          | 1.0                            | 0.15                               |
| Prasugrel diketone <sup>b</sup>                      | 0.78                          | 1.0                            | 0.20                               |
| Desacetyl prasugrel<br>diastereomer 1 <sup>c</sup>   | 0.86                          | 1.0                            | 0.20                               |
| Desacetyl prasugrel diastereomer 2 <sup>c</sup>      | 0.87                          | 1.0                            | 0.50                               |
| Prasugrel                                            | 1.0                           | _                              | _                                  |
| Prasugrel chlorobutyryl analog <sup>d</sup>          | 1.06                          | 0.73                           | 0.30                               |
| Any individual<br>unspecified<br>degradation product | _                             | 1.0                            | 0.10                               |
| Total degradation products                           | _                             | _                              | 1.0                                |

 $<sup>^{\</sup>rm a}$ 5-[2-Cyclopropyl-1-(2-fluorophenyl)-2-oxoethyl]-7a-hydroxy-5,6,7,7a-tetrahydrothieno[3,2-c]pyridin-2(4*H*)-one.

# SPECIFIC TESTS

### Change to read:

 $<sup>^{\</sup>rm b}$ 5-(2-Cyclopropyl-2-oxo-1-phenylethyl)-4,5,6,7-tetrahydrothieno[3,2-c] pyridin-2-yl acetate.

<sup>&</sup>lt;sup>c</sup>5-[2-Cyclopropyl-1-(4-fluorophenyl)-2-oxoethyl]-4,5,6,7-tetrahydrothieno[3,2-c]pyridin-2-yl acetate.

 $<sup>^{\</sup>rm d} \ 5\hbox{-[2-Cyclopropyl-1-(3-fluorophenyl)-2-oxoethyl]-4,5,6,7-tetrahydrothieno[3,2-c]pyridin-2-yl acetate.}$ 

<sup>&</sup>lt;sup>b</sup> 1-Cyclopropyl-2-(2-fluorophenyl)ethane-1,2-dione.

<sup>&</sup>lt;sup>c</sup> 5-[2-Cyclopropyl-1-(2-fluorophenyl)-2-oxoethyl]-5,6,7,7a-tetrahydrothieno[3,2-c]pyridin-2(4*H*)-one. Desacetyl prasugrel diastereomer 1 and desacetyl prasugrel diastereomer 2 are a pair of diastereomers.

<sup>&</sup>lt;sup>d</sup> 5-[5-Chloro-1-(2-fluorophenyl)-2-oxopentyl]-4,5,6,7-tetrahydrothieno[3,2-c] pyridin-2-yl acetate.

- **ADDITIONAL REQUIREMENTS** PACKAGING AND STORAGE: Preserve in well-closed containers. Store at room temperature.
- USP REFERENCE STANDARDS  $\langle 11 \rangle$  USP Prasugrel Hydrochloride RS ▲ 1S (USP41)