

Metformin Hydrochloride Extended-Release Tablets

Type of PostingRevision BulletinPosting Date6-Jan-2022Official Date7-Jan-2022

Expert Committee Small Molecules 3

In accordance with the Rules and Procedures of the Council of Experts, the Small Molecules 3 Expert Committee has revised the Metformin Hydrochloride Extended-Release Tablets monograph. The purpose of this revision is to add *Dissolution Test 20* to accommodate FDA-approved drug products with different dissolution conditions and/or tolerances than the existing dissolution test(s).

The Metformin Hydrochloride Extended-Release Tablets Revision Bulletin supersedes the currently official monograph.

Should you have any questions, please contact Claire Chisolm, Senior Scientist II, 301-230-3215 or cnc@usp.org.

Official: January 7, 2022

Metformin Hydrochloride Extended-Release Tablets

DEFINITION

Metformin Hydrochloride Extended-Release Tablets contain NLT 90.0% and NMT 110.0% of the labeled amount of metformin hydrochloride ($C_4H_{11}N_5 \cdot HCI$).

IDENTIFICATION

• **A.** The retention time of the major peak from the *Sample solution* corresponds to that from the *Standard solution*, as obtained in the *Assay*.

ASSAY

PROCEDURE

Buffer solution: 0.5 g/L of <u>sodium 1-heptanesulfonate</u> and 0.5 g/L of <u>sodium chloride</u> in water. Before final dilution, adjust with 0.06 M <u>phosphoric acid</u> to a pH of 3.85.

Mobile phase: Acetonitrile and Buffer solution (1:9). [Note—To improve the separation, the composition of acetonitrile and Buffer solution may be changed to 1:19, if necessary.]

Diluent: 1.25% solution of acetonitrile in water

Standard solution: (L/4000) mg/mL of <u>USP Metformin Hydrochloride RS</u> in *Diluent*, where L is the labeled quantity, in mg, of metformin hydrochloride in each Tablet

System suitability stock solution: 12.5 μg/mL each of <u>USP Metformin Related Compound B RS</u> and USP Metformin Related Compound C RS in *Diluent*

System suitability solution: Dilute 0.5 mL of the *System suitability stock solution* with the *Standard solution* to 50 mL.

Sample stock solution: Finely powder NLT 10 Tablets. Transfer powder, equivalent to the average Tablet weight, to a homogenization vessel, and add 500 mL of a 10% <u>acetonitrile</u> solution. Alternately, homogenize and allow to soak until the sample is fully homogenized. [Note—A suggested homogenization sequence is as follows. Homogenize the sample using five pulses, each of 5 s, at about 20,000 rpm, and allow to soak for 2 min. Repeat these steps two additional times.]

Sample solution: Pass a portion of the *Sample stock solution* through a suitable filter of 0.45-µm pore size, discarding the first 3 mL of filtrate. Transfer 25 mL of the filtrate to a 200-mL volumetric flask, and dilute with water to volume.

Chromatographic system

(See <u>Chromatography (621), System Suitability</u>.)

Mode: LC

Detector: UV 218 nm

Column: 3.9-mm \times 30-cm; 10- μ m packing <u>L1</u>

Column temperature: 30°

Flow rate: 1 mL/min
Injection volume: 10 µL

Run time: Until after the elution locus of metformin related compound C

System suitability

Sample: System suitability solution

[Note—The relative retention times for metformin related compound B, metformin, and metformin related compound C are 0.86, 1.0, and 2.1–2.3, respectively. Metformin related compound C can have a variable retention time. The composition of the *Mobile phase* may be changed to 1:19, if it elutes at a relative retention time of less than 2.1.]

Suitability requirements

Resolution: NLT 1.5 between the peaks due to metformin related compound B and metformin

Tailing factor: NLT 0.8 and NMT 2.0 for the metformin peak

Relative standard deviation: NMT 1.5% for the metformin peak and NMT 10% for each of the peaks due to metformin related compound B and metformin related compound C

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of metformin hydrochloride ($C_4H_{11}N_5 \cdot HCI$) in the portion of Tablets taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times 100$$

 r_{II} = peak response from the Sample solution

 $r_{\rm S}$ = peak response from the Standard solution

 C_S = concentration of <u>USP Metformin Hydrochloride RS</u> in the *Standard solution* (mg/mL)

 C_{II} = nominal concentration of metformin hydrochloride in the Sample solution

Acceptance criteria: 90.0%-110.0%

PERFORMANCE TESTS

Change to read:

• **Dissolution** (711)

Test 1

Medium: pH 6.8 phosphate buffer solution; 1000 mL

Apparatus 1: 100 rpm for Tablets labeled to contain 750 mg **Apparatus 2:** 100 rpm for Tablets labeled to contain 500 mg

Times: 1, 3, and 10 h
Detector: UV 232 nm

Standard solution: USP Metformin Hydrochloride RS in Medium

Sample solution: Pass a portion of the solution under test through a suitable hydrophilic polyethylene filter of 0.45-µm pore size. Dilute, if necessary, with *Medium* to a concentration similar to that of the *Standard solution*.

Analysis: Calculate the percentage of the labeled amount of metformin hydrochloride ($C_4H_{11}N_5 \cdot HCI$) released at each time point:

Result =
$$[(A_U/A_S) \times C_S \times (V - V_S) + (C_{60} \times V_S) + (C_{180} \times V_S)] \times (100/L)$$

 A_{II} = absorbance of the Sample solution

 A_S = absorbance of the *Standard solution*

 C_S = concentration of the *Standard solution* (mg/mL)

V = initial volume of *Medium* in the vessel (mL)

 V_{S} = volume withdrawn from the vessel for previous samplings (mL)

 C_{60} = concentration of metformin hydrochloride in *Medium* determined at 1 h (mg/mL)

 C_{180} = concentration of metformin hydrochloride in *Medium* determined at 3 h (mg/mL)

L = label claim (mg/Tablet)

Tolerances: See <u>Table 1</u>.

Table 1

Time (h)	Amount Dissolved, 500-mg Tablet (%)	Amount Dissolved, 750-mg Tablet (%)
1	20-40	22-42
3	45-65	49-69
10	NLT 85	NLT 85

The percentages of the labeled amount of metformin hydrochloride ($C_4H_{11}N_5 \cdot HCI$) dissolved at the times specified conform to <u>Dissolution (711)</u>, <u>Acceptance Table 2</u>.

Test 2: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 2.

Medium: Prepare as directed for Test 1; 1000 mL.

Apparatus 2: 100 rpm Times: 1, 2, 6, and 10 h Detector: UV 232 nm

Standard solution: USP Metformin Hydrochloride RS in Medium

Sample solution: Pass a portion of the solution under test through a suitable polyethylene filter of 0.45-µm pore size. Dilute, if necessary, with *Medium* to a concentration that is similar to that of the *Standard solution*.

Analysis: Calculate, in mg/mL, the content of metformin hydrochloride $(C_4H_{11}N_5 \cdot HCI)$ (C_t) , in *Medium* at each time point (t):

Result =
$$(A_U \times C_S \times D_U)/A_S$$

 A_U = absorbance of the Sample solution

 C_S = concentration of metformin hydrochloride in the Standard solution (mg/mL)

 D_{II} = dilution factor of the solution under test

 A_S = absorbance of the *Standard solution*

Calculate the percentage of the labeled amount of metformin hydrochloride (C $_4$ H $_{11}$ N $_5 \cdot$ HCI) dissolved at each time point by the following formulas.

Percentage dissolved at the first time point (1 h):

Result =
$$(C_1 \times V \times 100)/L$$

 C_1 = content of metformin hydrochloride in *Medium* at the first time interval (mg/mL)

V = volume of *Medium*, 1000 mL

L = label claim (mg/Tablet)

Percentage dissolved at the second time point (2 h):

Result =
$$[C_2 \times (V - SV_1) + C_1 \times SV_1] \times (100/L)$$

 C_2 = content of metformin hydrochloride in *Medium* at the second time interval (mg/mL)

V = volume of *Medium*, 1000 mL

 SV_1 = volume of the sample withdrawn at 1 h (mL)

 C_1 = content of metformin hydrochloride in *Medium* at 1 h (mg/mL)

L = label claim (mg/Tablet)

Percentage dissolved at the *n*th time point:

Result =
$$\{C_n \times [V - (n-1)V_S] + (C_1 + C_2 + ... + C_{n-1}) \times V_S\} \times (100/L)$$

 C_n = content of metformin hydrochloride in *Medium* at the *n*th time interval (mg/mL)

V = volume of Medium, 1000 mL

n = time interval of interest

 V_S = volume of sample withdrawn at each time interval (mL)

 $C = \text{as } C_1, C_2, C_3, \dots C_{n-1}$, the content of metformin hydrochloride in *Medium* at each time interval (mg/mL)

L = label claim (mg/Tablet)

Tolerances: See <u>Table 2</u>.

Table 2

Time (h)	Amount Dissolved (%)
1	20–40
2	35-55
6	65-85
10	NLT 85

The percentages of the labeled amount of metformin hydrochloride ($C_4H_{11}N_5 \cdot HCI$) dissolved at the times specified conform to <u>Dissolution (711)</u>, <u>Acceptance Table 2</u>.

Test 3: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 3*. **Medium, Apparatus 1,** and **Apparatus 2:** Proceed as directed in *Test 1*.

Times: 1, 2, 5, and 12 h for Tablets labeled to contain 500 mg; and 1, 3, and 10 h for Tablets labeled to contain 750 mg

Detector: UV 232 nm

Standard solution: USP Metformin Hydrochloride RS in Medium

Sample solution: Pass a portion of the solution under test through a suitable hydrophilic polyethylene filter of 0.45-µm pore size. Dilute, if necessary, with *Medium* to a concentration similar to that of the *Standard solution*.

Analysis: Calculate the percentage of the labeled amount of metformin hydrochloride ($C_4H_{11}N_5 \cdot HCI$) released at each time point:

$$\text{Result} = \{ [(A_U/A_S) \times C_S \times (V - V_S) + (C_{60} \times V_S) + (C_{120} \times V_S) + (C_{300} \times V_S) + (C_{720} \times V_S)] \times 100 \} / L$$

 A_U = absorbance of the Sample solution

 A_S = absorbance of the Standard solution

 C_S = concentration of the Standard solution (mg/mL)

V = initial volume of *Medium* in the vessel (mL)

 V_S = volume withdrawn from the vessel for previous samplings (mL)

 C_{60} = concentration of metformin hydrochloride in *Medium* determined at 1 h (mg/mL)

 C_{120} = concentration of metformin hydrochloride in *Medium* determined at 2 h (mg/mL)

 C_{300} = concentration of metformin hydrochloride in *Medium* determined at 5 h (mg/mL)

 C_{720} = concentration of metformin hydrochloride in *Medium* determined at 12 h (mg/mL)

L = label claim (mg/Tablet)

Tolerances: See Tables 3 and 4.

Table 3. For Tablets Labeled to Contain 500 mg

Time (h)	Amount Dissolved (%)
1	20-40
2	35-55
5	60-80
12	NLT 85

Table 4. For Tablets Labeled to Contain 750 mg

Time (h)	Amount Dissolved (%)
1	22–42
3	49-69
10	NLT 85

Test 4: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 4.

Medium: Prepare as directed for *Test 1*; 1000 mL.

Apparatus 2: 100 rpm **Times:** 1, 3, 6, and 10 h

Detector: UV 250 nm (shoulder)

Standard solution: USP Metformin Hydrochloride RS in Medium

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size. Dilute, if necessary, with *Medium* to a concentration similar to that of the *Standard solution*.

Analysis: Calculate, in mg/mL, the content of metformin hydrochloride (C $_4$ H $_{11}$ N $_5 \cdot$ HCl) (C_t), in

Medium at each time point (t), by the formulas specified in Test 2.

Tolerances: See <u>Table 5</u>.

Table 5

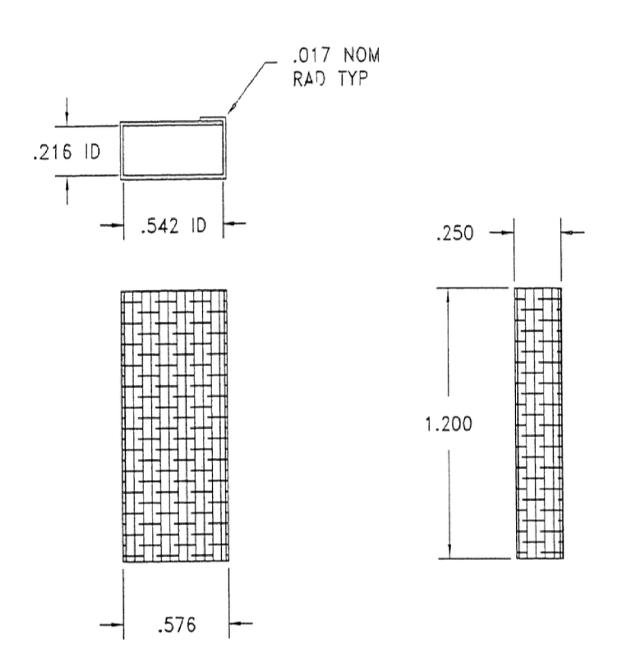
Time (h)	Amount Dissolved (%)
1	20–40
3	45-65
6	65-85
10	NLT 85

The percentages of the labeled amount of metformin hydrochloride ($C_4H_{11}N_5 \cdot HCI$) dissolved at the times specified conform to <u>Dissolution (711)</u>, <u>Acceptance Table 2</u>.

Test 5: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 5*.

Medium: pH 6.8 phosphate buffer solution; 900 mL, deaerated

Apparatus 1: 100 rpm, with the vertical holder described in <u>Figure 1</u> and <u>Figure 2</u>

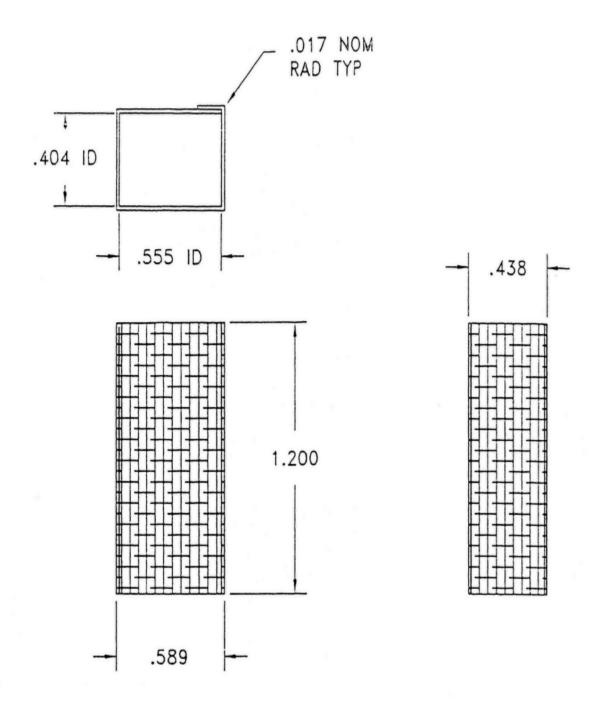

Times: 2, 8, and 16 h

Detector: UV 250 nm

Standard solution: <u>USP Metformin Hydrochloride RS</u> in *Medium*

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size. Dilute, if necessary, with *Medium* to a concentration similar to that of the *Standard solution*.

Analysis: Place a vertical sample holder into each basket (see <u>Figures 1</u> and <u>2</u>). Place 1 Tablet inside the sample holder, making sure that the Tablets are vertical at the bottom of the baskets. Calculate, in mg/mL, the content of metformin hydrochloride $(C_4H_{11}N_5 \cdot HCI)$ (C_t) , in <u>Medium</u> at each time point (t), by the formulas specified in <u>Test 2</u>.



NOTES:

- 1. MATERIAL: 316SS OR EQUIVALENT .017 WIRE VERTICAL MEAS SQUARE WEAVE WITH .039 SQUARE OPENINGS.
- 2. ALL DIMENSIONS ARE IN INCHES. TOLERANCES TO BE +/-.010

Click image to enlarge

Figure 1

NOTES:

- MATERIAL: 316SS OR EQUIVALENT .017 WIRE VERTICAL MEAS SQUARE WEAVE WITH .039 SQUARE OPENINGS.
- 2. ALL DIMENSIONS ARE IN INCHES. TOLERANCES TO BE +/-.010

Click image to enlarge

Figure 2

Tolerances: See <u>Table 6</u>.

Table 6

Time (h)	Amount Dissolved, 500-mg Tablet (%)	Amount Dissolved, 1000-mg Tablet (%)
2	NMT 30	NMT 30
8	60-85	65–90
16	NLT 90	NLT 90

Test 6: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 6*.

Medium: pH 6.8 phosphate buffer solution; 1000 mL, deaerated

Apparatus 2: 100 rpm, with USP sinker, if necessary

Detector: UV 233 nm

Standard solution: <u>USP Metformin Hydrochloride RS</u> in *Medium*

Sample solution: Pass a portion of the solution under test through a suitable hydrophilic polyethylene filter of 0.45-µm pore size. Dilute, if necessary, with *Medium* to a concentration similar to that of the *Standard solution*.

Analysis: Calculate the percentage of the labeled amount of metformin hydrochloride ($C_4H_{11}N_5 \cdot HCI$) released at each time point:

Result =
$$\{[(A_U/A_S) \times C_S \times (V - V_S) + (C_{60} \times V_S) + (C_{180} \times V_S) + (C_{600} \times V_S)] \times 100\}/L$$

 A_{U} = absorbance of the Sample solution

 A_S = absorbance of the Standard solution

 C_S = concentration of the *Standard solution* (mg/mL)

V = initial volume of *Medium* in the vessel (mL)

 V_S = volume withdrawn from the vessel for previous samplings (mL)

 C_{60} = concentration of metformin hydrochloride in *Medium* determined at 1 h (mg/mL)

 C_{180} = concentration of metformin hydrochloride in *Medium* determined at 3 h (mg/mL)

 C_{600} = concentration of metformin hydrochloride in *Medium* determined at 10 h (mg/mL)

L = label claim (mg/Tablet)

Tolerances: See <u>Table 7</u>.

Table 7

Time (h)	Amount Dissolved, 500-mg Tablet (%)	Amount Dissolved, 750-mg Tablet (%)
1	20-40	20-40

Time (h)	Amount Dissolved, 500-mg Tablet (%)	Amount Dissolved, 750-mg Tablet (%)
3	45-65	45-65
10	NLT 85	NLT 85

Test 7: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 7.

Medium: Prepare as directed in Test 1; 1000 mL.

Apparatus 1: 100 rpm for Tablets labeled to contain 750 mg

Apparatus 2: 50 rpm, with USP sinker, for Tablets labeled to contain 500 mg

Times: 1, 3, and 10 h
Detector: UV 232 nm

Standard solution: <u>USP Metformin Hydrochloride RS</u> in *Medium*

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size. Dilute, if necessary, with *Medium* to a concentration similar to that of the *Standard solution*.

Analysis: Calculate the percentage of the labeled amount of metformin hydrochloride ($C_4H_{11}N_5 \cdot HCI$) released at each time point:

$$\mathsf{Result} = \{ [(A_U/A_S) \times C_S \times (V - V_S) + (C_{60} \times V_S) + (C_{180} \times V_S) + (C_{600} \times V_S)] \times 100 \} / L + (C_{180} \times V_S) + (C_{180$$

 A_U = absorbance of the Sample solution

 A_S = absorbance of the Standard solution

 C_S = concentration of the *Standard solution* (mg/mL)

V = initial volume of *Medium* in the vessel (mL)

 V_S = volume withdrawn from the vessel for previous samplings (mL)

 C_{60} = concentration of metformin hydrochloride in *Medium* determined at 1 h (mg/mL)

 C_{180} = concentration of metformin hydrochloride in *Medium* determined at 3 h (mg/mL)

 C_{600} = concentration of metformin hydrochloride in *Medium* determined at 10 h (mg/mL)

L = label claim (mg/Tablet)

Tolerances: See <u>Table 8</u>.

Table 8

Time (h)	Amount Dissolved, 500-mg Tablet (%)	Amount Dissolved, 750-mg Tablet (%)
1	20-40	20–40
3	45-65	40-60

Time (h)	Amount Dissolved, 500-mg Tablet (%)	Amount Dissolved, 750-mg Tablet (%)
10	NLT 85	NLT 80

Test 8: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 8*.

Medium: Prepare as directed in Test 1; 1000 mL.

Apparatus 1: 100 rpm for Tablets labeled to contain 750 mg

Apparatus 2: 100 rpm, with sinker, for Tablets labeled to contain 500 mg

Times: 1, 2, 6, and 10 h **Detector:** UV 232 nm

Standard solution: <u>USP Metformin Hydrochloride RS</u> in *Medium*

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size. Dilute, if necessary, with *Medium* to a concentration similar to that of the *Standard solution*.

Analysis: Calculate the percentage of the labeled amount of metformin hydrochloride ($C_4H_{11}N_5 \cdot HCI$) released at each time point:

$$\text{Result} = \{ [(A_U/A_S) \times C_S \times (V - V_S) + (C_{60} \times V_S) + (C_{120} \times V_S) + (C_{360} \times V_S) + (C_{600} \times V_S)] \times 100 \} / L$$

 A_U = absorbance of the Sample solution

 A_S = absorbance of the *Standard solution*

 C_S = concentration of the *Standard solution* (mg/mL)

V = initial volume of *Medium* in the vessel (mL)

 V_S = volume withdrawn from the vessel for previous samplings (mL)

 C_{60} = concentration of metformin hydrochloride in *Medium* determined at 1 h (mg/mL)

 C_{120} = concentration of metformin hydrochloride in *Medium* determined at 2 h (mg/mL)

 C_{360} = concentration of metformin hydrochloride in *Medium* determined at 6 h (mg/mL)

 C_{600} = concentration of metformin hydrochloride in *Medium* determined at 10 h (mg/mL)

L = label claim (mg/Tablet)

Tolerances: See <u>Table 9</u>.

Table 9

Time (h)	Amount Dissolved, 500-mg Tablet (%)	Amount Dissolved, 750-mg Tablet (%)
1	20-40	20-40

Time (h)	Amount Dissolved, 500-mg Tablet (%)	Amount Dissolved, 750-mg Tablet (%)
2	30-50	35–55
6	65-85	75–95
10	NLT 85	NLT 85

Test 9: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 9*.

Medium: 0.05 M phosphate buffer, pH 6.8; 1000 mL

Apparatus 1: 100 rpm, for Tablets labeled to contain 750 mg **Apparatus 2:** 100 rpm, for Tablets labeled to contain 500 mg

Times: 1, 5, 12, and 20 h for Tablets labeled to contain 500 mg; and 1, 4, 10, and 24 h for Tablets labeled to contain 750 mg

Standard solution: 0.5 mg/mL of USP Metformin Hydrochloride RS in Medium

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size.

Detector: UV 232 nm

Path length: 0.01 cm, flow cell

Blank: Medium

Analysis: Calculate the percentage of the labeled amount of metformin hydrochloride ($C_4H_{11}N_5 \cdot HCI$) released at each time point:

$$\mathsf{Result} = \{ [(A_U/A_S) \times C_S \times (V - V_S) + (C_1 \times V_S) + (C_2 \times V_S) + (C_3 \times V_S) + (C_4 \times V_S)] \times 100 \} / L + (C_1 \times V_S) + (C_2 \times V_S) + (C_3 \times V_S) + (C_4 \times V_S) \}$$

 A_{II} = absorbance of the Sample solution

 A_S = absorbance of the *Standard solution*

 C_S = concentration of the *Standard solution* (mg/mL)

V = initial volume of *Medium* in the vessel (mL)

 V_S = volume withdrawn from the vessel for previous samplings (mL)

 C_1 = concentration of metformin hydrochloride in *Medium* determined at the first time point (mg/mL)

 C_2 = concentration of metformin hydrochloride in *Medium* determined at the second time point (mg/mL)

 C_3 = concentration of metformin hydrochloride in *Medium* determined at the third time point (mg/mL)

 C_4 = concentration of metformin hydrochloride in *Medium* determined at the fourth time point (mg/mL)

L = label claim (mg/Tablet)

Tolerances: See <u>Tables 10</u> and <u>11</u>.

Table 10. For Tablets Labeled to Contain 500 mg

Time (h)	Amount Dissolved (%)
1	20-40
5	45-65
12	70-90
20	NLT 85

Table 11. For Tablets Labeled to Contain 750 mg

Time (h)	Amount Dissolved (%)
1	20-45
4	45–70
10	70-95
24	NLT 85

Test 10: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test* 10.

Medium: 0.05 M phosphate buffer (prepared by dissolving 6.8 g of <u>monobasic potassium phosphate</u> in 250 mL of water, adding 77 mL of <u>0.2 N sodium hydroxide</u> and 500 mL of water, adjusting with <u>2 N sodium hydroxide</u> or 2 N hydrochloric acid to pH 6.8, and diluting with water to 1000 mL)

Apparatus 1: 100 rpm for Tablets labeled to contain 750 mg **Apparatus 2:** 100 rpm for Tablets labeled to contain 500 mg

Times: 1, 3, and 10 h

Standard solution: (L/100,000) mg/mL of <u>USP Metformin Hydrochloride RS</u> in *Medium*, where L is the label claim, in mg/Tablet. This solution is stable for 72 h at room temperature.

Sample solution: At the times specified, withdraw 10 mL of the solution under test and replace with 10 mL of *Medium* previously equilibrated at $37.0 \pm 0.5^{\circ}$. Centrifuge at 2500 rpm for 10 min. Dilute a portion of the supernatant with *Medium* to obtain a theoretical concentration of (L/100,000) mg/mL, where L is the label claim in mg/Tablet.

Detector: UV 233 nm **Path length:** 1 cm

Blank: Medium

Analysis: Calculate the concentration, in mg/mL, of metformin hydrochloride (C_i) at each time point:

$$C_i = (A_{ij}/A_S) \times C_S$$

 A_U = absorbance of the Sample solution

 A_S = absorbance of the *Standard solution*

 C_S = concentration of the *Standard solution* (mg/mL)

Calculate the cumulative percentage of the labeled amount of metformin hydrochloride ($C_4H_{11}N_5$ · HCI) dissolved (Q_i) at each time point (i):

At i = 1:

$$Q_1 = (C_1 \times V/L) \times 100$$

At i = 3:

$$Q_3 = [C_3(V - V_S) + (C_1 \times V_S)] \times 100/L$$

At i = 10:

$$Q_{10} = [C_{10}(V - 2V_S) + (C_1 + C_3)V_S] \times 100/L$$

V = initial volume of Medium, 1000 mL

 V_S = sampling volume, 10 mL L = label claim (mg/Tablet)

Tolerances: See <u>Table 12</u>.

Table 12

Time (h)	Amount Dissolved (%)
1	25–45
3	50-70
10	NLT 85

The percentages of the labeled amount of metformin hydrochloride ($C_4H_{11}N_5 \cdot HCI$) dissolved at the times specified conform to <u>Dissolution (711)</u>, <u>Acceptance Table 2</u>.

Test 11: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test* 11.

Medium: pH 6.8 phosphate buffer solution; 1000 mL

Apparatus 1: 100 rpm for Tablets labeled to contain 750 mg **Apparatus 2:** 100 rpm for Tablets labeled to contain 500 mg

Times: 1, 3, and 10 h

Standard solution: 7.5 µg/mL of USP Metformin Hydrochloride RS in Medium

Sample solution: At the times specified, withdraw 10 mL of the solution under test, and pass it through a suitable filter of 0.45- μ m pore size, discarding the first 3 mL of filtrate. Dilute 3.0 mL of the filtrate with *Medium* to 200 mL. For Tablets labeled to contain 750 mg, dilute 2.0 mL of the filtrate with *Medium* to 200 mL. Replace the volume of *Medium* taken with the same volume of *Medium* preheated at 37.0 \pm 0.5°.

Detector: UV 232 nm **Path length:** 1 cm **Blank:** *Medium*

Analysis: Calculate the percentage of the labeled amount of metformin hydrochloride ($C_4H_{11}N_5 \cdot HCI$) dissolved at each time point:

$$Q_i = (A_{IJ}/A_S) \times (C_S/L) \times V \times D \times 100$$

At 1 h:

Result = Q_1

At 3 h:

Result = $Q_3 + [(Q_1 \times 10)/V]$

At 10 h:

Result = Q_{10} + {[$(Q_1 \times 10)/V$] + [$(Q_3 \times 10)/V$]}

 A_U = absorbance of the Sample solution

 A_{S} = absorbance of the Standard solution

 C_S = concentration of the Standard solution (mg/mL)

L = label claim (mg/Tablet)

V = volume of *Medium*, 1000 mL

D = dilution factor of the Sample solution

Tolerances: See <u>Table 13</u>.

Table 13

Time (h)	Amount Dissolved (%)	
1	25–45	
3	50-70	
10	NLT 80	

The percentages of the labeled amount of metformin hydrochloride ($C_4H_{11}N_5 \cdot HCI$) dissolved at the times specified conform to <u>Dissolution (711)</u>, <u>Acceptance Table 2</u>.

Test 12: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test* 12.

Medium: pH 6.8 phosphate buffer solution; 1000 mL

Apparatus 1: 100 rpm **Times:** 1, 4, and 12 h

Standard stock solution: 0.2 mg/mL of USP Metformin Hydrochloride RS in Medium

Standard solution: 0.01 mg/mL of <u>USP Metformin Hydrochloride RS</u> in water, from the *Standard stock solution*

Sample solution: At the times specified, withdraw 10 mL of the solution under test, and replace with 10 mL of *Medium* previously equilibrated at $37.0 \pm 0.5^{\circ}$. Pass it through a suitable filter, discarding the first few mL of the filtrate.

For Tablets labeled to contain 500 mg: Dilute 2.0 mL of the filtrate with water to 100 mL. For Tablets labeled to contain 1000 mg: Dilute 1.0 mL of the filtrate with water to 100 mL.

Detector: UV 232 nm

Blank: Dilute 1 mL of Medium with water to 100 mL.

Analysis: Calculate the concentration (C_i) , in mg/mL, of metformin hydrochloride $(C_4H_{11}N_5 \cdot HCI)$ in the sample withdrawn at each time point (i):

$$Result_i = (A_U/A_S) \times C_S \times D$$

 A_{II} = absorbance of the Sample solution

 A_S = absorbance of the Standard solution

 C_S = concentration of the *Standard solution* (mg/mL)

D = dilution factor of the Sample solution

Calculate the percentage of the labeled amount of metformin hydrochloride ($C_4H_{11}N_5 \cdot HCI$) dissolved (Q_i) at each time point (i):

$$\mathsf{Result}_1 = C_1 \times V \times (1/L) \times 100$$

Result₂ = {
$$[C_2 \times V] + [C_1 \times V_S]$$
} × (1/L) × 100

Result₃ = {
$$[C_3 \times V] + [(C_2 + C_1) \times V_S]$$
} × (1/L) × 100

C_i = concentration of metformin hydrochloride in the portion of sample withdrawn at time point i (mg/mL)

V = initial volume of *Medium*, 1000 mL

L = label claim (mg/Tablet)

 V_S = volume of the Sample solution withdrawn, 10 mL

Tolerances: See Table 14.

Table 14

Time Point	Time	Amount Dissolved
(<i>i</i>)	(h)	(%)

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	NMT 15
2	4	35-65
3	12	NLT 85

Test 13: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test* 13.

Medium: pH 6.8 phosphate buffer solution; 1000 mL

Apparatus 1: 100 rpm **Times:** 1, 4, 6, and 14 h

Standard stock solution: 0.2 mg/mL of <u>USP Metformin Hydrochloride RS</u> prepared as follows.

Transfer a suitable amount of <u>USP Metformin Hydrochloride RS</u> into an appropriate volumetric flask.

Dissolve by adding *Medium* to fill 50% of the flask volume and dilute with *Medium* to volume.

Standard solution: 0.01 mg/mL of <u>USP Metformin Hydrochloride RS</u> from *Standard stock solution* in water

Sample stock solution: At the times specified, withdraw 10 mL of the solution under test, and replace with the same volume of *Medium* preheated at $37.0 \pm 0.5^{\circ}$. Pass a portion of the solution under test through a suitable filter of 0.45- μ m pore size, discard the first few mL, and use the filtrate.

Sample solution

For Tablets labeled to contain 500 mg: Dilute 2 mL of Sample stock solution with water to 100 mL.

For Tablets labeled to contain 1000 mg: Dilute 1 mL of Sample stock solution with water to 100 mL.

Instrumental conditions

(See <u>Ultraviolet-Visible Spectroscopy (857)</u>.)

Mode: UV

Analytical wavelength: 232 nm

Blank

For Tablets labeled to contain 500 mg: Dilute 2 mL of *Medium* with water to 100 mL. For Tablets labeled to contain 1000 mg: Dilute 1 mL of *Medium* with water to 100 mL.

System suitability

Sample: Standard solution **Suitability requirements**

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution, Sample solution, and Blank

Calculate the concentration (C_i) , in mg/mL, of metformin hydrochloride $(C_4H_{11}N_5 \cdot HCI)$ in the sample withdrawn from the vessel at each time point (i):

$$Result_i = (A_{IJ}/A_S) \times C_S \times D$$

 A_{II} = absorbance of the Sample solution

 A_{c} = absorbance of the *Standard solution*

 C_S = concentration of the *Standard solution* (mg/mL)

D = dilution factor of the Sample solution

Calculate the percentage of the labeled amount of metformin hydrochloride ($C_4H_{11}N_5 \cdot HCI$) dissolved at each time point (i):

$$\begin{aligned} \text{Result}_1 &= C_1 \times V \times (1/L) \times 100 \\ \text{Result}_2 &= [(C_2 \times V) + (C_1 \times V_S)] \times (1/L) \times 100 \\ \text{Result}_3 &= \{[C_3 \times V] + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100 \\ \text{Result}_4 &= \{[C_4 \times V] + [(C_3 + C_2 + C_1) \times V_S]\} \times (1/L) \times 100 \end{aligned}$$

 C_i = concentration of metformin hydrochloride in the portion of sample withdrawn at the specified time point (mg/mL)

V = volume of Medium, 1000 mL

L = label claim (mg/Tablet)

 V_S = volume of the Sample solution withdrawn at each time point and replaced with Medium (mL)

Tolerances: See Table 15.

Table 15

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	NMT 20
2	4	45-65
3	6	65-85
4	14	NLT 85

The percentages of the labeled amount of metformin hydrochloride ($C_4H_{11}N_5 \cdot HCI$) dissolved at the times specified conform to <u>Dissolution (711)</u>, <u>Acceptance Table 2</u>.

Test 14: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test* 14.

Medium: pH 6.8 phosphate buffer solution; 1000 mL

Apparatus 1: 100 rpm for Tablets labeled to contain 750 mg

Apparatus 2: 100 rpm for Tablets labeled to contain 500 mg

Times: 1, 3, and 10 h

Standard solution: 7.5 µg/mL of USP Metformin Hydrochloride RS in Medium

Sample solution: At the times specified, withdraw 10 mL of the solution under test and replace with the same volume of *Medium*. Pass the solution under test through a suitable filter of $10-\mu m$ pore size. Pass a portion of the filtered solution through a suitable filter of $0.45-\mu m$ pore size, discarding the first few milliliters. Dilute with *Medium* to a concentration similar to that of the *Standard solution*.

Instrumental conditions

Mode: UV

Analytical wavelength: 232 nm

Blank: Medium

Analysis

Samples: Standard solution, Sample solution, and Blank

Calculate the concentration (C_i) , in mg/mL, of metformin hydrochloride $(C_4H_{11}N_5 \cdot HCI)$ in the sample withdrawn from the vessel at each time point (i):

$$Result_i = (A_U/A_S) \times C_S \times D$$

 A_{II} = absorbance of the Sample solution

 A_{c} = absorbance of the Standard solution

 C_S = concentration of the Standard solution (μ g/mL)

D = dilution factor of the Sample solution

Calculate the percentage of the labeled amount of metformin hydrochloride ($C_4H_{11}N_5 \cdot HCI$) dissolved at each time point (i):

$$Result_1 = C_1 \times V \times (1/L) \times 100$$

$$\mathsf{Result}_2 = [(C_2 \times V) + (C_1 \times V_S)] \times (1/L) \times 100$$

Result₃ =
$$\{(C_3 \times V) + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

 C_i = concentration of metformin hydrochloride in the portion of sample withdrawn at the specified time point (mg/mL)

V = volume of Medium, 1000 mL

L = label claim (mg/Tablet)

 V_S = volume of the Sample solution withdrawn at each time point and replaced with Medium (mL)

Tolerances: See <u>Table 16</u>.

Table 16

Time Point	Time	Amount I	
(<i>i</i>)	Time (h)	500 mg Tablets	750 mg Tablets
1	1	30-50	25-45

Time Point	Time		Dissolved ⁄₀)
(i)	(h)	500 mg Tablets	750 mg Tablets
2	3	55-75	50-70
3	10	NLT 85	NLT 85

Test 16: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test* 16.

Medium: pH 6.8 phosphate buffer solution; 1000 mL

Apparatus 1: 100 rpm **Times:** 1, 3, and 10 h

Standard solution: 0.015 mg/mL of <u>USP Metformin Hydrochloride RS</u> in *Medium*. Sonicate as

needed.

Sample stock solution: At the times specified, withdraw 10 mL of the solution under test and pass it through a suitable filter.

Sample solution

For Tablets labeled to contain 500 mg: Dilute 3 mL of the Sample stock solution with Medium to 100 mL.

For Tablets labeled to contain 750 mg: Dilute 2 mL of the *Sample stock solution* with *Medium* to 100 mL.

Instrumental conditions

(See <u>Ultraviolet-Visible Spectroscopy (857)</u>.)

Mode: UV-Vis

Analytical wavelength: UV 232 nm

Path length: 1 cm
Blank: Medium
System suitability

Sample: Standard solution **Suitability requirements**

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the concentration (C_i) of metformin hydrochloride $(C_4H_{11}N_5 \cdot HCI)$ in the sample withdrawn from the vessel at each time point (i):

Result =
$$(A_U/A_S) \times C_S \times D$$

 A_U = absorbance of the Sample solution A_S = absorbance of the Standard solution C_S = concentration of the *Standard solution* (mg/mL)

D = dilution factor for the Sample solution

Calculate the percentage of the labeled amount of metformin hydrochloride ($C_4H_{11}N_5 \cdot HCI$) dissolved at the specified time point:

$$Result_1 = C_1 \times V \times (1/L) \times 100$$

$$\mathsf{Result}_2 = \{ [C_2 \times (V - V_S)] + (C_1 \times V_S) \} \times (1/L) \times 100$$

$$Result_3 = (\{C_3 \times [V - (2 \times V_S)]\} + [(C_2 + C_1) \times V_S]) \times (1/L) \times 100$$

 C_i = concentration of metformin hydrochloride in the portion of sample withdrawn at the specified time point (mg/mL)

V = volume of Medium, 1000 mL

L = label claim (mg/Tablet)

 V_S = volume of the Sample solution withdrawn at each time point (mL)

Tolerances: See <u>Table 17</u>.

Table 17

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	25-45
2	3	50-70
3	10	NLT 80

The percentages of the labeled amount of metformin hydrochloride ($C_4H_{11}N_5 \cdot HCI$) dissolved at the times specified conform to <u>Dissolution (711)</u>, <u>Acceptance Table 2</u>.

Test 18: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test* 18.

Medium: pH 6.8 phosphate buffer solution; 900 mL, deaerated

Apparatus 1: 100 rpm, with vertical holder described in Figure 1

Times: 1, 4, and 10 h

Standard solution: 0.044 mg/mL of <u>USP Metformin Hydrochloride RS</u> in *Medium*. Sonicate as needed.

Sample stock solution: At the times specified, withdraw a suitable amount of solution under test and replace with a suitable amount of *Medium*. Pass the solution under test through a suitable filter and discard the first few milliliters.

Sample solution

For Tablets labeled to contain 500 mg: Dilute 2 mL of the *Sample stock solution* with *Medium* to 25 mL.

For Tablets labeled to contain 1000 mg: Dilute 2 mL of the *Sample stock solution* with *Medium* to 50 mL.

Instrumental conditions

(See <u>Ultraviolet-Visible Spectroscopy</u> (857).)

Mode: UV-Vis

Analytical wavelength: UV 250 nm

Path length: 1 cm Blank: Medium System suitability

Sample: Standard solution **Suitability requirements**

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Place a vertical sample holder into each basket (see <u>Figure 1</u>). Place 1 Tablet inside the sample holder, making sure that the Tablets are vertical at the bottom of the baskets.

Calculate the concentration (C_i) of metformin hydrochloride $(C_4H_{11}N_5 \cdot HCI)$ in the sample withdrawn from the vessel at each time point (i):

Result =
$$(A_I/A_S) \times C_S \times D$$

 A_{II} = absorbance of the Sample solution

 A_{c} = absorbance of the Standard solution

 C_S = concentration of the Standard solution (mg/mL)

D = dilution factor of the Sample solution

Calculate the percentage of the labeled amount of metformin hydrochloride ($C_4H_{11}N_5 \cdot HCI$) dissolved at each time point (i):

$$Result_1 = C_1 \times V \times (1/L) \times 100$$

Result₂ =
$$[(C_2 \times V) + (C_1 \times V_S)] \times (1/L) \times 100$$

$$\mathsf{Result}_3 = \{(C_3 \times V) + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

 C_i = concentration of metformin hydrochloride in the portion of sample withdrawn at the specified time point (mg/mL)

V = volume of Medium, 900 mL

L = label claim (mg/Tablet)

 V_S = volume of the Sample solution withdrawn at each time point and replaced with Medium (mL)

Tolerances: See Table 18.

Table 18

Time Point	Time (h)	Amount Dissolved (%)
. ,		` '

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	NMT 30
2	4	45-70
3	10	NLT 85

▲ Test 20: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test* 20.

Medium: 0.05 M phosphate buffer, pH 6.8; 1000 mL

Apparatus 1: 100 rpm Times: 1, 4, and 12 h

Standard solution: L/1000 mg/mL of <u>USP Metformin Hydrochloride RS</u> in *Medium*, where *L* is the

label claim of metformin hydrochloride in mg/Tablet. Sonicate if needed.

Sample solution: Pass a portion of the solution under test through a suitable filter.

Instrumental conditions

(See <u>Ultraviolet-Visible Spectroscopy (857)</u>.)

Mode: UV-Vis

Analytical wavelength: UV 233 nm, with background correction at 490 nm

Cell length: 0.02-cm flow cell

Blank: Medium

System suitability

Sample: Standard solution
Suitability requirements

Relative standard deviation: NMT 3.0%

Analysis

Samples: Standard solution, Sample solution, and Blank

Calculate the percentage of the labeled amount of metformin hydrochloride ($C_4H_{11}N_5 \cdot HCI$) dissolved at each time point (i):

Result =
$$A_U/A_S \times C_S \times V \times (1/L) \times 100$$

 A_{II} = absorbance of the Sample solution

 A_S = absorbance of the Standard solution

 C_S = concentration of <u>USP Metformin Hydrochloride RS</u> in the *Standard solution* (mg/mL)

V = volume of *Medium*, 1000 mL

L = label claim (mg/Tablet)

Tolerances: See Table 19.

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	15-35
2	4	52-72
3	12	NLT 80

The percentages of the labeled amount of metformin hydrochloride (C₄H₁₁N₅·HCl) dissolved at the times specified conform to <u>Dissolution (711)</u>, <u>Acceptance Table 2</u>. ▲ (RB 7-Jan-2022)

Test 22: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test* 22.

Medium: 0.05 M phosphate buffer (Dissolve 6.8 g of <u>potassium phosphate monobasic</u> and 0.94 g of <u>sodium hydroxide</u> in 1 L of <u>water</u>. Adjust with 1 N <u>sodium hydroxide</u> to a pH of 6.8.); 1000 mL, deaerated.

Apparatus 1: 100 rpm **Times:** 1, 3, and 8 h

Standard stock solution: 0.5 mg/mL of <u>USP Metformin Hydrochloride RS</u> in *Medium* prepared as follows. Transfer a suitable amount of <u>USP Metformin Hydrochloride RS</u> to an appropriate volumetric flask. Add 60% of the flask volume of *Medium* and sonicate for 5 min. Dilute with *Medium* to volume.

Standard solution: (L/100,000) mg/mL of <u>USP Metformin Hydrochloride RS</u> in *Medium*, where L is the label claim in mg/Tablet.

Sample stock solution: At the times specified, withdraw 10 mL of the solution under test and replace with 10 mL of *Medium* previously equilibrated at 37°. Centrifuge at 2500 rpm for 10 min.

Sample solution: Dilute 1 mL of the Sample stock solution with Medium to 100 mL.

Instrumental conditions

(See <u>Ultraviolet-Visible Spectroscopy (857)</u>.)

Mode: UV

Analytical wavelength: UV 233 nm

Path length: 1 cm
Blank: Medium
System suitability

Sample: Standard solution **Suitability requirements**

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution, Sample solution, and Blank

Calculate the concentration (C_i) of metformin hydrochloride $(C_4H_{11}N_5 \cdot HCI)$ in the sample withdrawn from the vessel at each time point (i):

Result =
$$(A_U/A_S) \times C_S \times D$$

 A_{II} = absorbance of the Sample solution

 A_c = absorbance of the Standard solution

 C_S = concentration of <u>USP Metformin Hydrochloride RS</u> in the *Standard solution* (mg/mL)

D = dilution factor for the Sample solution

Calculate the percentage of the labeled amount of metformin hydrochloride ($C_4H_{11}N_5 \cdot HCI$) dissolved at the specified time point (i):

$$Result_1 = C_1 \times V \times (1/L) \times 100$$

Result₂ =
$$[(C_2 \times V) + (C_1 \times V_S)] \times (1/L) \times 100$$

Result₃ =
$$\{(C_3 \times V) + [(C_2 + C_1) \times V_5]\} \times (1/L) \times 100$$

 C_i = concentration of metformin hydrochloride in the portion of sample withdrawn at the specified time point (mg/mL)

V = volume of Medium, 1000 mL

L = label claim (mg/Tablet)

 V_S = volume of the Sample solution withdrawn at each time point and replaced with Medium (mL)

Tolerances: See [▲]*Table 20*.

Table 20 ▲ (RB 7-Jan-2022)

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	30-50
2	3	57-77
3	8	NLT 80

The percentages of the labeled amount of metformin hydrochloride ($C_4H_{11}N_5 \cdot HCI$) dissolved at the times specified conform to <u>Dissolution (711)</u>, <u>Acceptance Table 2</u>.

Test 23: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 23*.

Medium: pH 6.8 phosphate buffer; 900 mL, deaerated

Apparatus 1: 100 rpm **Times:** 1, 4, and 10 h

Buffer: 2.8 g/L of <u>sodium phosphate</u>, <u>monobasic</u>, 2.0 g/L of <u>sodium 1-heptanesulfonate</u>, and 2 mL/L of <u>triethylamine</u> prepared as follows. Dissolve 2.8 g of <u>sodium phosphate</u>, <u>monobasic</u> and 2.0 g of <u>sodium 1-heptanesulfonate</u> in 800 mL of <u>water</u>. Add 2 mL of <u>triethylamine</u>, and dilute with <u>water</u> to volume. Adjust with <u>phosphoric acid</u> to a pH of 3.5.

Mobile phase: Methanol and Buffer (40:60)

Standard solution: (L/900) mg/mL of <u>USP Metformin Hydrochloride RS</u> in *Medium*, where L is the label claim in mg/Tablet. Sonicate to dissolve, if necessary.

Sample solution: At the times specified, withdraw a suitable amount of solution under test. Pass the solution under test through a suitable filter, and discard the first 3 mL.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 260 nm

Column: 4.6-mm × 15-cm; 5-µm packing L1

Column temperature: 35°

Flow rate: 1 mL/min Injection volume: $10 \mu L$

Run time: NLT 2 times the retention time of metformin

System suitability

Sample: Standard solution
Suitability requirements
Tailing factor: NMT 2.5

Relative standard deviation: NMT 3.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the concentration (C_i) of metformin hydrochloride $(C_4H_{11}N_5 \cdot HCI)$ in the sample withdrawn from the vessel at each time point (i):

Result =
$$(r_I/r_S) \times C_S$$

 r_U = peak response of metformin from the Sample solution

 $r_{\rm S}$ = peak response of metformin from the Standard solution

 C_S = concentration of <u>USP Metformin Hydrochloride RS</u> in the *Standard solution* (mg/mL)

Calculate the percentage of the labeled amount of metformin hydrochloride ($C_4H_{11}N_5 \cdot HCI$) dissolved at the specified time point (i):

$$\mathsf{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\mathsf{Result}_2 = \{ [C_2 \times (V - V_S)] + (C_1 \times V_S) \} \times (1/L) \times 100$$

Result₃ =
$$({C_3 \times [V - (2 \times V_S)]}) + [(C_2 + C_1) \times V_S]) \times (1/L) \times 100$$

 C_i = concentration of metformin hydrochloride in the portion of sample withdrawn at the specified time point (mg/mL)

V = volume of the Medium, 900 mL

L = label claim (mg/Tablet)

 V_S = volume of the Sample solution withdrawn at each time point (mL)

Tolerances: See [▲]*Table 21*.

Table 21 ▲ (RB 7-Jan-2022)

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	10-30
2	4	50-70
3	10	NLT 85

Test 24: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test* 24.

Medium: pH 6.8 phosphate buffer solution; 1000 mL

Apparatus 1: 100 rpm for Tablets labeled to contain 750 mg **Apparatus 2:** 100 rpm for Tablets labeled to contain 500 mg

Times: 1, 3, and 10 h

Standard solution: 7.5 µg/mL of USP Metformin Hydrochloride RS in Medium

Sample stock solution: At the times specified, withdraw 10 mL of the solution under test and replace with the same amount of *Medium*. Pass a portion of the solution under test through a suitable filter of 0.45-μm pore size, discarding the first 3 mL.

Sample solution

For Tablets labeled to contain 500 mg: Dilute 3 mL of the Sample stock solution with Medium to 200 mL.

For Tablets labeled to contain 750 mg: Dilute 2 mL of the *Sample stock solution* with *Medium* to 200 mL.

Instrumental conditions

(See <u>Ultraviolet-Visible Spectroscopy (857)</u>.)

Mode: UV-Vis

Analytical wavelength: UV 232 nm

Blank: Medium

Analysis

Samples: Standard solution and Sample solution

Calculate the concentration (C_i) of metformin hydrochloride $(C_4H_{11}N_5 \cdot HCI)$ in the sample withdrawn from the vessel at each time point (i):

Result =
$$(A_U/A_S) \times C_S \times D$$

 A_U = absorbance of the Sample solution

 A_S = absorbance of the *Standard solution*

 C_S = concentration of <u>USP Metformin Hydrochloride RS</u> in the *Standard solution* (mg/mL)

D = dilution factor for the Sample solution

Calculate the percentage of the labeled amount of metformin hydrochloride ($C_4H_{11}N_5 \cdot HCI$) dissolved at the specified time point:

$$Result_1 = C_1 \times V \times (1/L) \times 100$$

$$\mathsf{Result}_2 = [(C_2 \times V) + (C_1 \times V_S)] \times (1/L) \times 100$$

Result₃ = {
$$[C_3 \times V] + [(C_2 + C_1) \times V_S]$$
} × (1/L) × 100

 C_i = concentration of metformin hydrochloride in the portion of sample withdrawn at the specified time point (mg/mL)

V = volume of Medium, 1000 mL

L = label claim (mg/Tablet)

 V_S = volume of the Sample solution withdrawn at each time point (mL)

Tolerances: See [▲]*Table 22*.

Table 22 (RB 7-Jan-2022)

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	25-45
2	3	45-65
3	10	NLT 80

The percentages of the labeled amount of metformin hydrochloride ($C_4H_{11}N_5 \cdot HCI$) dissolved at the times specified conform to *Dissolution* (711), *Acceptance Table 2*.

Test 25: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test* 25.

Medium: pH 6.8 phosphate buffer solution; 1000 mL

Apparatus 1: 100 rpm **Times:** 1, 3, and 10 h

Standard solution: 7.5 μg/mL of USP Metformin Hydrochloride RS in Medium

Sample stock solution: At the times specified, withdraw 10 mL of the solution under test and replace with the same amount of *Medium*. Pass a portion of the solution under test through a suitable filter of 0.45-μm pore size, discarding the first few milliliters.

Sample solution

For Tablets labeled to contain 500 mg: Dilute 3 mL of the Sample stock solution with Medium to 200 mL.

For Tablets labeled to contain 750 mg: Dilute 2 mL of the *Sample stock solution* with *Medium* to 200 mL.

Instrumental conditions

(See <u>Ultraviolet-Visible Spectroscopy (857)</u>.)

Mode: UV

Analytical wavelength: UV 232 nm

Blank: Medium

Analysis

Samples: Standard solution and Sample solution

Calculate the concentration (C_i) of metformin hydrochloride $(C_4H_{11}N_5 \cdot HCI)$ in the sample withdrawn from the vessel at each time point (i):

Result =
$$(A_{I}/A_{S}) \times C_{S} \times D$$

 A_{II} = absorbance of the Sample solution

 A_S = absorbance of the *Standard solution*

 C_S = concentration of <u>USP Metformin Hydrochloride RS</u> in the *Standard solution* (mg/mL)

D = dilution factor for the Sample solution

Calculate the percentage of the labeled amount of metformin hydrochloride ($C_4H_{11}N_5 \cdot HCI$) dissolved at the specified time point:

$$\mathsf{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\mathsf{Result}_2 = [(C_2 \times V) + (C_1 \times V_S)] \times (1/L) \times 100$$

Result₃ = {
$$[C_3 \times V] + [(C_2 + C_1) \times V_S]$$
} × (1/L) × 100

 C_i = concentration of metformin hydrochloride in the portion of sample withdrawn at the specified time point (mg/mL)

V = volume of Medium, 1000 mL

L = label claim (mg/Tablet)

 V_S = volume of the Sample solution withdrawn at each time point (mL)

Tolerances: See [▲]*Table 23*.

Table 23 (RB 7-Jan-2022)

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	23-43
2	3	50-70
3	10	NLT 80 (Q)

The percentages of the labeled amount of metformin hydrochloride ($C_4H_{11}N_5 \cdot HCI$) dissolved at the times specified conform to <u>Dissolution (711)</u>, <u>Acceptance Table 2</u>.

• UNIFORMITY OF DOSAGE UNITS (905): Meet the requirements

IMPURITIES

• ORGANIC IMPURITIES

Mobile phase, Sample solution, and Chromatographic system: Proceed as directed in the Assay.

Analysis: From the chromatogram of the *Sample solution* obtained in the *Assay*, calculate the percentage of each impurity in the portion of Tablets taken:

Result =
$$(r_{IJ}/r_T) \times 100$$

 r_{U} = peak response for each impurity

 r_T = sum of all the peak responses

Acceptance criteria

Individual impurities: NMT 0.1%

Total impurities: NMT 0.6%

[Note—Disregard any peak less than 0.05%, and disregard any peak observed in the blank.]

ADDITIONAL REQUIREMENTS

- **Packaging and Storage:** Preserve in well-closed, light-resistant containers, and store at controlled room temperature.
- **LABELING:** When more than one dissolution test is given, the labeling states the *Dissolution* test used only if *Test 1* is not used.
- USP REFERENCE STANDARDS (11)

USP Metformin Hydrochloride RS

USP Metformin Related Compound B RS

1-Methylbiquanide hydrochloride.

$$C_3H_9N_5HCI$$
 151.60

USP Metformin Related Compound C RS

N,N-Dimethyl-[1,3,5]triazine-2,4,6-triamine.

$$C_5H_{10}N_6$$
 154.17

Page Information:

Not Applicable

Current DocID:

© 2022 The United States Pharmacopeial Convention All Rights Reserved.