

Donepezil Hydrochloride Tablets

Type of PostingRevision BulletinPosting Date24-Apr-2020Official Date01-May-2020

Expert Committee Chemical Medicines Monographs 4

Reason for Revision Compliance

In accordance with the Rules and Procedures of the 2015–2020 Council of Experts, the Chemical Medicines Monographs 4 Expert Committee has revised the Donepezil Hydrochloride Tablets monograph. The purpose for the revision is to add *Dissolution Test 5* to accommodate FDA-approved drug products with different dissolution conditions and/or tolerances than the existing dissolution test. The revision also necessitates a change in the table numbering in the tests for *Organic Impurities, Procedure 1* and *Organic Impurities, Procedure 2*.

• Dissolution Test 5 was validated using an XTerra RP18 brand of column with L1 packing. The typical retention time for donepezil is about 6 min.

The Donepezil Hydrochloride Tablets Revision Bulletin supersedes the currently official monograph.

Should you have any questions, please contact Heather Joyce, Senior Scientific Liaison (301-998-6792 or hrj@usp.org).

Donepezil Hydrochloride Tablets

DEFINITION

Donepezil Hydrochloride Tablets contain NLT 90.0% and NMT 110.0% of the labeled amount of donepezil hydrochloride ($C_{24}H_{29}NO_3 \cdot HCl$).

IDENTIFICATION

Change to read:

• A. *Spectroscopic Identification Tests (197),

Ultraviolet-Visible Spectroscopy: 197U_{▲ (CN 1-May-2020)}

Wavelength range: 220-360 nm

Sample solution: Crush a suitable number of Tablets, and transfer an amount of powder, equivalent to 10 mg of donepezil hydrochloride, to a 100-mL volumetric flask. Add 80 mL of 0.1 N hydrochloric acid VS, and sonicate for 5 min. Cool the solution to room temperature, and dilute with 0.1 N hydrochloric acid VS to volume. Transfer a portion of this solution to a centrifuge tube, and centrifuge for 15 min. Transfer 5 mL of the clear supernatant to a 25-mL volumetric flask, and dilute with 0.1 N hydrochloric acid VS to volume.

Analysis: Using a 1-cm cell, record the UV spectrum of the *Sample solution*.

Acceptance criteria: The solution exhibits absorption maxima at 230, 271, and 315 nm.

• **B.** The retention time of the major peak of the *Sample* solution corresponds to that of the *Standard solution*, as obtained in the *Assay*.

ASSAY

• PROCEDURE

Diluent: Methanol and 0.1 N hydrochloric acid VS (75:25) **Mobile phase:** Dissolve 2.5 g of sodium 1-decanesulfonate in 650 mL of water, and add 1.0 mL of perchloric acid and 350 mL of acetonitrile. If necessary, adjust with an additional 0.5 mL of perchloric acid to a pH of about 1.8.

System suitability solution: 0.2 mg/mL of USP Donepezil Hydrochloride RS and 0.008 mg/mL of USP Donepezil Related Compound A RS. [Note—Dissolve in 40% of the flask volume of methanol, swirl, and dilute with water to volume.]

Standard solution: 0.4 mg/mL of USP Donepezil Hydrochloride RS in *Diluent*. [NOTE—Dissolve in 60% of the flask volume of *Diluent*, swirl, and dilute with *Diluent* to volume.]

Sample solution: Nominally 0.4 mg/mL of donepezil hydrochloride prepared as follows. Dissolve a suitable number of Tablets in 75% of the flask volume of *Diluent*, and sonicate in an ultrasonic bath for 20 min. Swirl the mixture for 30 s, allow to cool to room temperature, and dilute with *Diluent* to volume. [NOTE—If necessary, add a magnetic stirring bar to the flask, and mix for 10 min on the magnetic stirrer, to aid in dissolution.] Allow a few min for the solids to settle. Pass through a suitable filter, discarding the first 2–3 mL of the filtrate.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 271 nm Column: 4.6-mm × 15-cm; 5-µm packing L1

Column temperature: 35° Flow rate: 1.4 mL/min Injection volume: 20 µL

System suitability

Samples: System suitability solution and Standard solution

[NOTE—The relative retention times for donepezil related compound A and donepezil are about 0.92 and 1.0, respectively.]

Suitability requirements

Resolution: NLT 1.5 between donepezil related compound A and donepezil, *System suitability solution* **Tailing factor:** NMT 1.5 for the donepezil peak, *System suitability solution*

Relative standard deviation: NMT 2.0%, *Standard solution*

Analysis

Samples: Standard solution and Sample solution Calculate the percentage of the labeled amount of donepezil hydrochloride (C₂₄H₂₉NO₃·HCl) in the portion of Tablets taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times 100$$

 r_U = peak response of donepezil hydrochloride from the *Sample solution*

 r_s = peak response of donepezil hydrochloride from the Standard solution

C_s = concentration of USP Donepezil Hydrochloride RS in the *Standard solution* (mg/mL)

C_U = nominal concentration of donepezil hydrochloride in the Sample solution (mg/mL)

Acceptance criteria: 90.0%–110.0%

PERFORMANCE TESTS

Change to read:

Dissolution (711)

Test 1

Medium: 0.1 N hydrochloric acid VS; 900 mL

Apparatus 2: 50 rpm Time: 30 min

Analytical procedure: Determine the amount of donepezil hydrochloride (C₂₄H₂₉NO₃·HCl) dissolved, by using one of the following methods.

Chromatographic method

Diluent: Methanol and 0.1 N hydrochloric acid VS (75:25)

Mobile phase: Acetonitrile, water, and perchloric acid (35: 65: 0.1)

Standard stock solution A: 1.1 mg/mL of USP Donepezil Hydrochloride RS in *Diluent*

Standard stock solution B: 0.11 mg/mL of USP Donepezil Hydrochloride RS from Standard stock solution A in Medium

Standard solution: (*L*/1000) mg/mL of USP Donepezil Hydrochloride RS from *Standard stock solution B* in *Medium*, where *L* is the label claim in mg/Tablet

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size, discarding the first few mL of the filtrate.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 271 nm

Column: 4.6-mm × 15-cm; 5-µm packing L1

Column temperature: 35° Flow rate: 1.0 mL/min Injection volume: 50 µL System suitability

Sample: Standard solution Suitability requirements Tailing factor: NMT 1.5

Column efficiency: NLT 5000 theoretical plates

Relative standard deviation: NMT 2.0% **Analysis**

Samples: Standard solution and Sample solution Calculate the percentage of the labeled amount of donepezil hydrochloride (C₂₄H₂₉NO₃·HCl) dissolved:

Result =
$$(r_U/r_S) \times (C_S/L) \times V \times 100$$

 r_U = peak response from the Sample solution r_S = peak response from the Standard solution

 C_s = concentration of the Standard solution (mg/mL)

L = label claim (mg/Tablet) V = volume of *Medium*, 900 mL

Spectrometric method

Standard stock solution: 0.11 mg/mL of USP

Donepezil Hydrochloride RS in water

Standard solution: (L/900) mg/mL of USP Donepezil Hydrochloride RS from the Standard stock solution in Medium, where L is the label claim in mg/Tablet Sample solution: Pass a portion of the solution under

test through a suitable filter of 0.45-µm pore size.

Instrumental conditions

(See Ultraviolet-Visible Spectroscopy (857).)

Mode: UV

Analytical wavelength: 230 nm

Blank: Medium

Calculate the percentage of the labeled amount of donepezil hydrochloride ($C_{24}H_{29}NO_3 \cdot HCI$) dissolved:

Result =
$$(A_U/A_S) \times (C_S/L) \times V \times 100$$

 A_U = absorbance of the Sample solution A_S = absorbance of the Standard solution

 C_s = concentration of the Standard solution (mg/mL)

L = label claim (mg/Tablet) V = volume of *Medium*, 900 mL

Tolerances: NLT 80% (*Q*) of the labeled amount of donepezil hydrochloride is dissolved.

For Tablets which contain 23 mg of donepezil hydrochloride

Test 2: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 2*.

Medium: pH 6.8 phosphate buffer; 900 mL

Apparatus 2: 50 rpm Times: 1, 3, and 8 h

Buffer: 5.0 g/L of monobasic ammonium phosphate in water adjusted with phosphoric acid to a pH of 2.3

Mobile phase: Acetonitrile and Buffer (25:75)

Standard stock solution: 0.26 mg/mL of USP Donepezil Hydrochloride RS prepared as follows. Transfer a suitable quantity of USP Donepezil Hydrochloride RS to an appropriate volumetric flask. Add 70% of the flask volume of *Medium*. Sonicate to dissolve and dilute with *Medium* to volume.

Standard solution: (*L*/900) mg/mL of USP Donepezil Hydrochloride RS from *Standard stock solution* in *Medium*, where *L* is the label claim in mg/Tablet. Pass the solution through a suitable filter, discarding the first 3 mL of the filtrate.

Sample solution: Pass a portion of the solution under test through a suitable filter, discarding the first 3 mL of the filtrate.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 210 nm

Column: 4.6-mm × 15-cm; 5-µm packing L1

Column temperature: 35° Flow rate: 1.5 mL/min Injection volume: 50 µL

Injection volume: $50~\mu L$ Run time: NLT 1.7 times the retention time of done pezil

System suitability

Sample: Standard solution Suitability requirements Tailing factor: NMT 1.5

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution Calculate the concentration (C_i) of donepezil hydrochloride $(C_{24}H_{29}NO_3 \cdot HCI)$ in the sample withdrawn from the vessel at each time point (i):

Result_i =
$$(r_U/r_S) \times C_S$$

 r_U = peak response of donepezil from the Sample solution

r_s = peak response of donepezil from the Standard solution

C_s = concentration of USP Donepezil Hydrochloride RS in the *Standard solution* (mg/mL)

Calculate the percentage of the labeled amount of donepezil hydrochloride ($C_{24}H_{29}NO_3 \cdot HCI$) dissolved at each time point (*i*):

Result₁ =
$$C_1 \times V \times (1/L) \times 100$$

Result₂ = { $[C_2 \times (V - V_S)] + [C_1 \times V_S]$ } × $(1/L) \times 100$
Result₃ = ({ $C_3 \times [V - (2 \times V_S)]$ } + $[(C_2 + C_1) \times V_S]$) × $(1/L)$
× 100

C_i = concentration of donepezil hydrochloride in the portion of the sample withdrawn at the specified time point (mg/ml.)

time point (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim (mg/Tablet)

 V_s = volume of the *Sample solution* withdrawn at each time point (mL)

Tolerances: See Table 1.

Table 1

Time Point (i)	Time (h)	Amount Dissolved (%)	
1	1	NMT 20	
2	3	35–60	
3	8	NLT 80	

The percentages of the labeled amount of donepezil hydrochloride ($C_{24}H_{29}NO_3 \cdot HCI$) dissolved at the times specified conform to *Dissolution* (711), *Acceptance Table 2*.

Test 3: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 3*.

Medium: pH 6.8 phosphate buffer; 900 mL

Apparatus 2: 50 rpm Times: 1, 3, and 10 h

Standard stock solution: 0.25 mg/mL of USP Donepezil Hydrochloride RS prepared as follows. Transfer a suitable quantity of USP Donepezil Hydrochloride RS to an appropriate volumetric flask. Add 70% of the flask volume of water. Sonicate to dissolve and allow to cool to room temperature. Dilute with water to volume.

Standard solution: (L/900) mg/mL of USP Donepezil Hydrochloride RS from Standard stock solution in *Medium*, where L is the label claim in mg/Tablet

Sample solution: Pass a portion of the solution under test through a suitable filter.

Instrumental conditions

(See Ultraviolet-Visible Spectroscopy (857).)

Mode: UV-Vis

Analytical wavelength: 315 nm

Blank: Medium System suitability

Sample: Standard solution Suitability requirements

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution Calculate the concentration (C) of donepezil hydrochloride ($C_{24}H_{29}NO_3 \cdot HCI$) in the sample withdrawn from the vessel at each time point (i):

Result_i =
$$(A_U/A_S) \times C_S$$

 A_U = absorbance of donepezil from the Sample solution

= absorbance of donepezil from the Standard A_{S}

 C_{ς} = concentration of USP Donepezil Hydrochloride RS in the Standard solution (mg/mL)

Calculate the percentage of the labeled amount of donepezil hydrochloride (C₂₄H₂₉NO₃ · HCl) dissolved at each time point (i):

Result₁ =
$$C_1 \times V \times (1/L) \times 100$$

Result₂ = { $[C_2 \times (V - V_S)] + [C_1 \times V_S]$ } × (1/L) × 100
Result₃ = ({ $C_3 \times [V - (2 \times V_S)]$ } + $[(C_2 + C_1) \times V_S]$) × (1/L)
× 100

 C_i = concentration of donepezil hydrochloride in the portion of the sample withdrawn at the specified time point (mg/mL)

= volume of *Medium*, 900 mL V = label claim (mg/Tablet) 1

= volume of the Sample solution withdrawn at each time point (mL)

Tolerances: See Table 2.

Table 2

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	10–30
2	3	33–53
3	10	NLT 80

The percentages of the labeled amount of donepezil hydrochloride (C₂₄H₂₉NO₃ · HCl) dissolved at the times specified conform to Dissolution (711), Acceptance Table 2.

Test 4: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 4.

Medium: 0.05 M sodium phosphate buffer, pH 6.8 [0.1 N hydrochloric acid VS and 76 g/L of tribasic sodium phosphate (25:75) adjusted with 2 N hydrochloric acid TS or 2 N sodium hydroxide TS to a pH of 6.8]; 900 mL, degassed

Apparatus 2: 50 rpm, with sinkers; see Dissolution (711), Figure 2a.

Times: 1, 3, and 8 h

Buffer: 1.36 g/L of monobasic potassium phosphate prepared as follows. To each 1 L of 1.36 g/L of monobasic potassium phosphate in water, add 3 mL of triethylamine and adjust with phosphoric acid to a pH of

Mobile phase: Methanol and Buffer (47:53)

Diluent: Methanol and water (50:50) **Standard stock solution:** 0.53 mg/mL of USP Donepezil

Hydrochloride RS in Diluent

Standard solution: 0.027 mg/mL of USP Donepezil Hydrochloride RS from Standard stock solution in Medium Sample solution: Pass a portion of the solution under test through a suitable filter. Replace the portion removed with the same volume of Medium.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 268 nm

Column: 4.6-mm × 15-cm; 5-µm packing L7

Flow rate: 1.3 mL/min Injection volume: 20 μL

Run time: NLT 1.7 times the retention time of donepezil

System suitability

Sample: Standard solution Suitability requirements Tailing factor: NMT 1.5

Relative standard deviation: NMT 1.0%

Analysis

Samples: Standard solution and Sample solution Calculate the concentration (C_i) of donepezil hydrochloride (C₂₄H₂₉NO₃ · HCl) in the sample withdrawn from the vessel at each time point (i):

Result_i =
$$(r_{ij}/r_s) \times C_s$$

= peak response of donepezil from the Sample r_U

= peak response of donepezil from the Standard $r_{\scriptscriptstyle S}$

 C_{S} = concentration of USP Donepezil Hydrochloride RS in the Standard solution (mg/mL)

Calculate the percentage of the labeled amount of donepezil hydrochloride ($C_{24}H_{29}NO_3\cdot HCI$) dissolved at each time point (i):

Result₁ =
$$C_1 \times V \times (1/L) \times 100$$

Result₂ = $[(C_2 \times V) + (C_1 \times V_S)] \times (1/L) \times 100$
Result₃ = $\{(C_3 \times V) + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100$

= concentration of donepezil hydrochloride in the C_i portion of the sample withdrawn at time point i (mg/mL)

V = volume of Medium, 900 mL = label claim (mg/Tablet)

= volume of Sample solution withdrawn at each time point and replaced with *Medium* (mL)

Tolerances: See Table 3.

Table 3

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	10–30
2	3	40–60
3	8	NLT 80

The percentages of the labeled amount of donepezil hydrochloride ($C_{24}H_{29}NO_3 \cdot HCl$) dissolved at the times specified conform to *Dissolution* (711), *Acceptance Table 2*.

▲ Test 5: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 5.

Medium: 0.05 M potassium phosphate buffer (6.8 g/L of monobasic potassium phosphate and 0.9 g/L of sodium hydroxide in water adjusted with dilute phosphoric acid in water or dilute sodium hydroxide in water to a pH of 6.80); 900 mL

Apparatus 2: 50 rpm, with suitable sinkers

Times: 1, 3, and 9 h

Buffer: 6.8 g/L of monobasic potassium phosphate in water; adjusted with phosphoric acid to a pH of 3.0

Mobile phase: Methanol and Buffer (40:60) Diluent: Methanol and water (50:50)

Standard stock solution: 0.5 mg/mL of USP Donepezil Hydrochloride RS prepared as follows. Transfer a suitable amount of USP Donepezil Hydrochloride RS to an appropriate volumetric flask and dissolve in 50% of the flask volume of *Diluent*. Sonicate for NLT 1 min to promote dissolution then dilute with *Diluent* to volume.

Standard solution: 0.025 mg/mL of USP Donepezil Hydrochloride RS from *Standard stock solution* in *Medium* **Sample solution:** Pass a portion of the solution under test through a suitable filter discarding the first NLT 3 mL of filtrate.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 271 nm

Column: 4.6-mm × 15-cm; 5-µm packing L1

Column temperature: 30° Flow rate: 1 mL/min Injection volume: 50 µL

Run time: NLT 1.5 times the retention time of donepezil

System suitability

Sample: Standard solution Suitability requirements Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution Calculate the concentration (C_i) of donepezil hydrochloride ($C_{24}H_{29}NO_3 \cdot HCI$) in the sample withdrawn from the vessel at each time point (i):

Result_i =
$$(r_{ij}/r_s) \times C_s$$

 r_U = peak response of donepezil from the Sample solution

r_s = peak response of donepezil from the Standard solution

C_s = concentration of USP Donepezil Hydrochloride RS in the Standard solution (mg/mL)

Calculate the percentage of the labeled amount of donepezil hydrochloride ($C_{24}H_{29}NO_3 \cdot HCI$) dissolved at each time point (i):

$$\begin{aligned} & \text{Result}_1 = C_1 \times V \times (1/L) \times 100 \\ & \text{Result}_2 = \{ [C_2 \times (V - V_S)] + [C_1 \times V_S] \} \times (1/L) \times 100 \\ & \text{Result}_3 = (\{C_3 \times [V - (2 \times V_S)]\} + [(C_2 + C_1) \times V_S]) \times (1/L) \\ & \times 100 \end{aligned}$$

 C_i = concentration of donepezil hydrochloride in the portion of the sample withdrawn at the specified time point (mg/mL) V = volume of Medium, 900 mL

= label claim (mg/Tablet)

 V_s = volume of the *Sample solution* withdrawn at each time point (mL)

Tolerances: See Table 4.

Table 4

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	15–35
2	3	40–60
3	9	NLT 80

The percentages of the labeled amount of donepezil hydrochloride ($C_{24}H_{29}NO_3 \cdot HCI$) dissolved at the times specified conform to *Dissolution* (711), *Acceptance Table 2*. \blacktriangle (RB 1-May-2020)

 Uniformity of Dosage Units (905): Meet the requirements

IMPURITIES

Change to read:

• ORGANIC IMPURITIES, PROCEDURE 1

[NOTE—On the basis of the synthetic route, perform either *Procedure 1* or *Procedure 2*. *Procedure 2* is recommended if any of the impurities included in [▲]*Table 7*_{♠ (RB 1-May-2020)} are potential degradation products.]

Diluent, Mobile phase, System suitability solution, Sample solution, and Chromatographic system:

Proceed as directed in the Assay.

Standard solution: 0.0008 mg/mL of USP Donepezil Hydrochloride RS in *Diluent*

System suitability

Samples: System suitability solution and Standard solution [Note—The relative retention times for donepezil related compound A and donepezil are about 0.92 and 1.0, respectively.]

Suitability requirements

Resolution: NLT 1.5 between donepezil related compound A and donepezil, System suitability solution Relative standard deviation: NMT 8.0%, Standard solution

Analysis

Samples: Standard solution and Sample solution
[Note—Identify the impurities using the relative retention times given in ▲ Table 5 ★ (RB 1-May-2020).]
Calculate the percentage of any individual impurity in the portion of Tablets taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

 r_U = peak response of each individual impurity from the *Sample solution*

 r_s = peak response of donepezil hydrochloride from the Standard solution

C_s = concentration of USP Donepezil Hydrochloride RS in the *Standard solution* (mg/mL)

C_U = nominal concentration of donepezil hydrochloride in the Sample solution (mg/mL)

F = relative response factor (see Table 5) (RB 1-May-2020)

Acceptance criteria: See *Table 5.

Table 5 (RB 1-May-2020)

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Desbenzyl donepezila	0.33	1.0	0.5
Donepezil open ring ^b	0.70	0.6	0.5
Donepezil hydrochloride	1.0	_	_
Donepezil <i>N</i> -oxide ^c	1.2	1.0	0.5
Any individual unspecified degradation product	_	_	0.2

^a 5,6-Dimethoxy-2-(piperidin-4-ylmethyl)indan-1-one.

Change to read:

• ORGANIC IMPURITIES, PROCEDURE 2

Diluent: Acetonitrile and water (25:75)

Solution A: Add 1 mL of phosphoric acid in 1 L of water. Adjust with triethylamine to a pH of 6.5. Pass through a filter of 0.45-µm or finer pore size.

Solution B: Acetonitrile Mobile phase: See ≜ Table 6.

Table 6 ▲ (RB 1-May-2020)

Time (min)	Solution A (%)	Solution B (%)
0	75	25
10	40	60
40	40	60
41	75	25
50	75	25

Standard solution: 0.01 mg/mL of USP Donepezil Hydrochloride RS in *Diluent*. Sonication may be used to aid the dissolution.

Sample solution: Nominally 1.0 mg/mL of donepezil hydrochloride in *Diluent*. Sonication may be used to aid the dissolution.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 286 nm

Column: 4.6-mm × 25-cm; 5-µm packing L1

Column temperature: 50° Flow rate: 1.5 mL/min Injection volume: 20 µL System suitability

Sample: Standard solution Suitability requirements Tailing factor: NMT 1.5

Relative standard deviation: NMT 2.0%, for five

replicate injections

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of each specified impurity or any individual degradation product in the portion of Tablets taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

 r_U = peak response of each individual impurity from the Sample solution

 r_5 = peak response of donepezil hydrochloride from the *Standard solution*

C_s = concentration of USP Donepezil Hydrochloride RS in the Standard solution (mg/mL)

 C_U = nominal concentration of donepezil

hydrochloride in the Sample solution (mg/mL)

F = relative response factor for the corresponding impurity peak from ▲ Table 7 ▲ (RB 1-May-2020)

Acceptance criteria: See [▲]Table 7.

Table 7 ▲ (RB 1-May-2020)

Name	Relative Retention Time ^a	Relative Response Factor	Acceptance Criteria, NMT (%)
Desbenzyl donepezil ^b	0.23	1.5	0.15
Donepezil pyridine analog ^c	0.49	1.9	0.15
Donepezil quaternary salt ^d	0.68	0.74	0.15
Donepezil hydrochloride	1.0	1.0	_
Donepezil indene analog ^e	1.7	2.2	0.15
Deoxydonepezil ^f	2.1	1.3	0.15
Any individual degradation product	_	1.0	0.1
Total degradation products	_	_	1.0

^a Relative retention times are based on 1-mL gradient delay volume.

ADDITIONAL REQUIREMENTS

 PACKAGING AND STORAGE: Preserve in well-closed containers. Store at controlled room temperature.

• **LABELING:** If a test for *Organic Impurities* other than *Procedure 1* is used, the labeling states the test with which the article complies. If a test for *Dissolution* other than *Test 1* is used, the labeling states the test with which the article complies.

• USP REFERENCE STANDARDS (11)

USP Donepezil Hydrochloride RS

USP Donepezil Rélated Compound A RS

(E)-2-[(1-Benzylpiperidin-4-yl)methylene]-5,6-dimeth oxyindan-1-one.

 $C_{24}H_{27}NO_3$ 377.48

^b 2-(3-(1-Benzylpiperidin-4-yl)-2-oxopropyl)-4,5-dimethoxybenzoic acid.

^c 2-[(1-Benzylpiperidin-4-yl)methyl]-5,6-dimethoxyindan-1-one *N*-oxide.

^b 5,6-Dimethoxy-2-(piperidin-4-ylmethyl)indan-1-one.

^c 5,6-Dimethoxy-2-(pyridin-4-ylmethyl)indan-1-one; also known as DPMI. ^d 1,1-Dibenzyl-4-[(5,6-dimethoxy-1-oxoindan-2-yl)methyl]piperidinium; also

known as donepezil benzyl.

e 1-Benzyl-4-[(5,6-dimethoxyinden-2-yl)methyl]piperidine; also known as dehydrodeoxy donepezil.

f 1-Benzyl-4-[(5,6-dimethoxyindan-2-yl)methyl]piperidine.