Cetyl Alcohol

Click image to enlarge

 $C_{16}H_{34}O$ 242.44 1-Hexadecanol [36653-82-4].

DEFINITION

Cetyl Alcohol contains NLT 90.0% and NMT 102.0% of cetyl alcohol ($C_{16}H_{34}O$), the remainder consisting chiefly of related alcohols. It is obtained from sources of vegetable, animal, or synthetic origin.

IDENTIFICATION

• A. CHROMATOGRAPHIC IDENTITY

System suitability solution, Sample solution, and Analysis: Proceed as directed in the *Assay*. **Acceptance criteria:** The retention time of the major peak of the *Sample solution*, excluding the solvent and internal standard peaks, corresponds to the cetyl alcohol peak of the *System suitability solution*.

ASSAY

PROCEDURE

Internal standard solution: 1 mg/mL of $\underline{1\text{-pentadecanol}}$ (internal standard) in $\underline{\text{ethanol}}$

System suitability solution: Prepare 1 mg/mL each of <u>USP Cetyl Alcohol RS</u>, <u>USP Stearyl Alcohol RS</u>, and <u>USP Oleyl Alcohol RS</u> in *Internal standard solution*, and heat the solution in a sealed container in a 50° water bath until all fatty alcohols are dissolved. Allow the solution to cool to room temperature, and mix well.

Standard solution: Prepare 1.0 mg/mL of <u>USP Cetyl Alcohol RS</u> in *Internal standard solution*, and heat the solution in a sealed container in a 50° water bath until cetyl alcohol is dissolved. Allow the solution to cool to room temperature, and mix well.

Sample solution: Prepare 1.0 mg/mL of Cetyl Alcohol in *Internal standard solution*, and heat the solution in a sealed container in a 50° water bath until cetyl alcohol is dissolved. Allow the solution to cool to room temperature, and mix well.

Chromatographic system

(See <u>Chromatography (621), System Suitability</u>.)

Mode: GC

Detector: Flame ionization

Column: 0.25-mm × 30-m fused-silica capillary; coated with a 0.25-µm layer of phase G7

Temperatures

Injection port: 270° Detector: 280° Column: See *Table 1*.

Table 1

Initial	Temperature	Final	Hold Time at Final
Temperature	Ramp	Temperature	Temperature
(°)	(°/min)	(°)	(min)

Initial Temperature (°)	Temperature Ramp (°/min)	Final Temperature (°)	Hold Time at Final Temperature (min)
60	20	180	_
180	10	220	5

Carrier gas: Hydrogen

Flow rate: 2.0 mL/min, constant flow mode

Injection volume: 1 μL

Injection type: Split; split ratio, 100:1

Liner: Single taper, low pressure drop liner with deactivated wool

Run time: 15 min System suitability

Samples: System suitability solution and Standard solution

[Note—See <u>Table 2</u> for the relative retention times.]

Table 2

Name	Relative Retention Time
1-Pentadecanol (internal standard)	1.00
Cetyl alcohol	1.09
Stearyl alcohol	1.25
Oleyl alcohol	1.28

Suitability requirements

Resolution: NLT 30 between the cetyl alcohol and stearyl alcohol peaks; NLT 2.0 between the stearyl alcohol and oleyl alcohol peaks, *System suitability solution*

Tailing factor: 0.8-1.8 for the cetyl alcohol and 1-pentadecanol peaks, Standard solution

Relative standard deviation: NMT 1%, using the area ratio of cetyl alcohol to 1-pentadecanol,

Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of cetyl alcohol ($C_{16}H_{34}O$) in the portion of Cetyl Alcohol taken:

Result =
$$(R_U/R_S) \times (C_S/C_U) \times 100$$

 R_U = peak response ratio of cetyl alcohol to the internal standard from the Sample solution

 R_S = peak response ratio of cetyl alcohol to the internal standard from the *Standard solution*

 C_S = concentration of <u>USP Cetyl Alcohol RS</u> in the *Standard solution* (mg/mL)

 C_U = concentration of Cetyl Alcohol in the Sample solution (mg/mL)

Acceptance criteria: 90.0%-102.0%

IMPURITIES

• RESIDUE ON IGNITION (281): NMT 0.1%, determined on 2 g

Change to read:

▲[Note—On the basis of the manufacturing route, perform either *Organic Impurity Test 1* (vegetable or animal sources) or *Organic Impurity Test 2* (synthetic sources).] ▲ (IRA 1-Nov-2020)

Change to read:

◆ Organic Impurity Test 1: (IRA 1-Nov-2020) LIMIT OF RELATED FATTY ALCOHOLS

Solution A: 1 mg/mL of <u>1-pentadecanol</u> in <u>ethanol</u>

Resolution solution: Prepare 1 mg/mL of <u>USP Lauryl Alcohol RS</u>, 1 mg/mL of <u>USP Myristyl Alcohol RS</u>, 1 mg/mL of <u>USP Cetyl Alcohol RS</u>, 1 mg/mL of <u>USP Stearyl Alcohol RS</u>, and 1 mg/mL of <u>USP Oleyl Alcohol RS</u> in *Solution A*. Heat the solution in a sealed container in a 50° water bath until all fatty alcohols are dissolved. Allow the solution to cool to room temperature, and mix well. Dilute the solution with ethanol to have a solution containing 0.05 mg/mL each of <u>USP Lauryl Alcohol RS</u>, <u>USP Myristyl Alcohol RS</u>, <u>USP Cetyl Alcohol RS</u>, <u>1-pentadecanol</u>, <u>USP Stearyl Alcohol RS</u>, and <u>USP Oleyl Alcohol RS</u>.

Sample solution: Prepare 1.0 mg/mL of Cetyl Alcohol in <u>ethanol</u>, and heat the solution in a sealed container in a 50° water bath until cetyl alcohol is dissolved. Allow the solution to cool to room temperature, and mix well.

Chromatographic system: Proceed as directed in the Assay, except for the split ratio.

Injection type: Split; split ratio, 5:1

System suitability

Sample: Resolution solution

[Note—See <u>Table 3</u> for the relative retention times.]

Table 3

Name	Relative Retention Time
Lauryl alcohol ▲a (IRA 1-Nov-2020)	0.79
Myristyl alcohol ▲ (IRA 1-Nov-2020)	0.93
1-Pentadecanol ▲ b (IRA 1-Nov-2020)	1.00
Cetyl alcohol (IRA 1-Nov-2020)	1.09
Stearyl alcohol ▲ (IRA 1-Nov-2020)	1.25
Oleyl alcohol ▲a (IRA 1-Nov-2020)	1.28

a Related linear chain fatty alcohol.

Suitability requirements

Resolution: NLT 15 between the myristyl alcohol and 1-pentadecanol peaks; NLT 30 between the cetyl alcohol and stearyl alcohol peaks; NLT 2.0 between the stearyl alcohol and oleyl alcohol peaks

Analysis

Samples: Resolution solution and Sample solution

Identify each related fatty alcohol peak in the Sample solution based on those in the Resolution solution.

b Internal standard.

^c Sample.

Calculate the percentage of each related fatty alcohol or [▲]any unidentified _{▲ (IRA 1-Nov-2020)} impurity in the portion of Cetyl Alcohol taken:

Result =
$$(r_{I}/r_{T}) \times 100$$

 r_U = peak response of each related fatty alcohol (or any $^{\blacktriangle}$ unidentified $_{\blacktriangle}$ (IRA 1-Nov-2020) impurity) from the Sample solution

 r_T = sum of all the peak responses excluding peak responses due to solvent from the *Sample* solution

Acceptance criteria: Disregard peaks that are less than 0.05% for any [▲]unidentified _{▲ (IRA 1-Nov-2020)} impurities and any peaks due to solvent.

Sum of **unidentified** (IRA 1-Nov-2020) impurities: NMT 1%

Sum of related fatty alcohols and [▲]unidentified _{▲ (IRA 1-Nov-2020)} impurities: NMT 10.0%

Add the following:

◆ ORGANIC IMPURITY TEST 2: LIMIT OF BRANCHED-CHAIN FATTY ALCOHOLS, RELATED LINEAR FATTY ALCOHOLS, AND RELATED UNSATURATED ALCOHOLS AND ALKANES

Solution A: 1 mg/mL of <u>1-pentadecanol</u> in <u>ethanol</u>

Resolution solution: Prepare 1 mg/mL each of <u>USP Lauryl Alcohol RS</u>, <u>USP Myristyl Alcohol RS</u>, <u>USP Cetyl Alcohol RS</u>, <u>USP Stearyl Alcohol RS</u>, and <u>USP Oleyl Alcohol RS</u> in *Solution A*. Heat the solution in a sealed container in a 50° water bath until all fatty alcohols are dissolved. Allow the solution to cool to room temperature, and mix well. Dilute the solution with ethanol to have a solution containing 0.05 mg/mL each of <u>USP Lauryl Alcohol RS</u>, <u>USP Myristyl Alcohol RS</u>, <u>USP Cetyl Alcohol RS</u>, <u>1-pentadecanol</u>, <u>USP Stearyl Alcohol RS</u>, and <u>USP Oleyl Alcohol RS</u>.

Sample solution: Prepare 1.0 mg/mL of Cetyl Alcohol in <u>ethanol</u>, and heat the solution in a sealed container in a 50° water bath until cetyl alcohol is dissolved. Allow the solution to cool to room temperature, and mix well.

Chromatographic system: Proceed as directed in the Assay, except for the split ratio.

Injection type: Split, split ratio, 5:1

System suitability

Sample: Resolution solution

[Note—See <u>Table 4</u> for the relative retention times.]

Table 4

Name	Relative Retention Time
<i>n</i> -Octadecane ^{<u>a</u>}	0.77
Lauryl alcohol ^b	0.79
<i>n</i> -Nonadecane ^{<u>a</u>}	0.84
Branched eicosanes <u>a</u>	0.86-0.88
n-Eicosane ^a	0.91
Myristyl alcohol ^b	0.93

Name	Relative Retention Time
4-Hexadecanol or 5-Hexadecanol [©]	0.96
3-Hexadecanol ^c	0.97
2-Hexyl-1-decanol or 2-Butyl-1-dodecanol ^d	0.99
1-Pentadecanol ^{<u>e</u>}	1.00
Unsaturated hexadecanol $(1)^{\underline{f}}$	1.01
Unsaturated hexadecanol (2) ^f	1.02
2-Ethyl-1-tetradecanol ^d	1.02
Unsaturated hexadecanol (3) ^f	1.03
Heptadecanol [⊆]	1.04
Unsaturated hexadecanol (4) ^f	1.05
2-Heptadecanol [⊆]	1.06
Octadecanol ^{<u>C</u>}	1.07
Cetyl alcohol ^g	1.09
Stearyl alcohol ^b	1.25
Oleyl alcohol ^{<u>b</u>}	1.28

^a Alkane.

Suitability requirements

Resolution: NLT 15 between the myristyl alcohol and 1-pentadecanol peaks; NLT 30 between the cetyl alcohol and stearyl alcohol peaks; NLT 2.0 between the stearyl alcohol and oleyl alcohol peaks

Analysis

Samples: Resolution solution and Sample solution

Identify each related fatty alcohol, alkane, and unsaturated alcohol peak in the *Sample solution* based on those in the *Resolution solution*.

Calculate the percentage of each related fatty alcohol, alkane, unsaturated alcohol, or any other unidentified related fatty alcohol or impurity in the portion of Cetyl Alcohol taken:

Result =
$$(r_U/r_T) \times 100$$

r_U = peak response of each related fatty alcohol, alkane, and unsaturated alcohol (or any unidentified impurity) from the Sample solution

 r_T = sum of all the peak responses excluding peak responses due to solvent from the Sample

b Related linear chain fatty alcohol.

^c Linear secondary fatty alcohols.

d Related branched-chain fatty alcohol.

e Internal standard.

f Related unsaturated alcohol.

g Sample.

solution

Acceptance criteria: Disregard peaks that are less than 0.05% for any unidentified impurities and any peaks due to solvent.

Branched primary and linear secondary fatty alcohols (2-hexyl-1-decanol, 2-butyl-1-dodecanol, 2-ethyl-1-tetradecanol, 3-hexadecanol, 4-hexadecanol or 5-hexadecanol, heptadecanol, 2-heptadecanol, octadecanol): NMT 5.0%

Related linear fatty alcohols (lauryl alcohol, myristyl alcohol, stearyl alcohol, oleyl alcohol): NMT 1.0%

Related alkanes (octadecane, nonadecane, eicosane, branched eicosanes): NMT 1.0%

Related unsaturated alcohols: NMT 1.0% Sum of unidentified impurities: NMT 1.5%

Sum of related fatty alcohols, alkanes, and unidentified impurities: NMT 10.0% (IRA 1-Nov-2020)

SPECIFIC TESTS

- FATS AND FIXED OILS (401), Procedures, Acid Value: NMT 2
- FATS AND FIXED OILS (401), Procedures, Hydroxyl Value: 218–238
- FATS AND FIXED OILS (401), Procedures, Iodine Value: NMT 5

Change to read:

Water Determination (921), Method I, Method Ia: (IRA 1-Nov-2020)
 NMT 0.5%

ADDITIONAL REQUIREMENTS

• PACKAGING AND STORAGE: Preserve in well-closed containers.

Change to read:

- **LABELING:** [▲]If a test for *Impurities* other than *Organic Impurity Test 1* is used, the labeling states the test with which the article complies. _{▲ (IRA 1-Nov-2020)} Label it to indicate whether it is derived from vegetable, animal, or synthetic sources.
- USP REFERENCE STANDARDS (11)

USP Cetyl Alcohol RS
USP Lauryl Alcohol RS
USP Myristyl Alcohol RS
USP Oleyl Alcohol RS
USP Stearyl Alcohol RS

Page Information:

Not Applicable

DocID:

© 2020 The United States Pharmacopeial Convention All Rights Reserved.