

Calcium Acetate Capsules

Type of PostingRevision BulletinPosting Date20-Nov-2020Official Date1-Dec-2020

Expert Committee Small Molecules 5

In accordance with the Rules and Procedures of the Council of Experts, the Small Molecules 5 Expert Committee has revised the Calcium Acetate Capsules monograph. The purpose for the revision is add "with appropriate sinkers, if necessary" in the existing *Dissolution Test 4* to accommodate FDA-approved drug products.

The Calcium Acetate Capsules Revision Bulletin supersedes the currently official monograph.

Should you have any questions, please contact Michael Chang, Senior Scientific Liaison (301-230-3217 or mxc@usp.org).

Calcium Acetate Capsules

DEFINITION

Calcium Acetate Capsules contain NLT 90.0% and NMT 110.0% of the labeled amount of calcium acetate $(C_4H_6CaO_4)$.

IDENTIFICATION

• **A.** The retention time of the calcium peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the *Assay*.

• B. IDENTIFICATION TESTS—GENERAL (191), Chemical Identification Tests, Acetate

Sample solution: 67 mg/mL of calcium acetate from Capsule contents

Acceptance criteria: Meet the requirements for test *B*

ASSAY

• PROCEDURE

Solution A: 0.75 mM <u>dipicolinic acid</u> and 1.7 mM <u>nitric acid</u> in <u>water</u>. [Note—Warm <u>water</u> may be required to dissolve <u>dipicolinic acid</u>.]

Mobile phase: Acetone and Solution A (100:900). Pass through a suitable filter of 0.2-µm pore size.

Standard solution: 0.08 mg/mL of USP Calcium Acetate RS in water

Sample stock solution: Nominally 6.7 mg/mL of calcium acetate prepared as follows. Transfer an appropriate portion of the contents of NLT 20 Capsules to a suitable volumetric flask. Add <u>water</u> to about 40% of the final volume of the flask and sonicate for 20 min with intermittent shaking. Dilute with <u>water</u> to volume. Pass through a suitable filter of 0.45-µm pore size.

Sample solution: Nominally 0.08 mg/mL of calcium acetate in <u>water</u> from the *Sample stock solution*

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: Ion chromatography **Detector:** Conductivity

Column: 4.0-mm \times 15-cm; 5- μ m packing <u>L76</u>

Column temperature: 35° Flow rate: 0.9 mL/min Injection volume: 10 µL

Run time: NLT 1.5 times the retention time of the calcium peak

System suitability

Sample: Standard solution **Suitability requirements**

Column efficiency: NLT 1000 theoretical plates **Relative standard deviation:** NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of calcium acetate $(C_4H_6CaO_4)$ in the portion of Capsules taken:

Result =
$$(r_{II}/r_S) \times (C_S/C_{II}) \times 100$$

 r_{II} = peak response of calcium from the Sample solution

 $r_{\rm S}$ = peak response of calcium from the *Standard solution*

 C_S = concentration of <u>USP Calcium Acetate RS</u> in the *Standard solution* (mg/mL)

 C_{II} = nominal concentration of calcium acetate in the Sample solution (mg/mL)

Acceptance criteria: 90.0%-110.0%

PERFORMANCE TESTS

Change to read:

• **Dissolution** (711)

Test 1

Medium: Water; 900 mL

Apparatus 2: 50 rpm, with sinkers

Time: 10 min

Mobile phase, Standard solution, Chromatographic system, and **System suitability:** Proceed as directed in the *Assay*.

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size. Dilute with *Medium* to a concentration similar to the *Standard solution*, if necessary.

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of calcium acetate $(C_4H_6CaO_4)$ dissolved:

Result =
$$(r_U/r_S) \times C_S \times V \times D \times (1/L) \times 100$$

 r_{II} = peak response of calcium from the Sample solution

 $r_{\rm S}$ = peak response of calcium from the *Standard solution*

 C_S = concentration of <u>USP Calcium Acetate RS</u> in the *Standard solution* (mg/mL)

V = volume of Medium, 900 mL

D = dilution factor for the Sample solution, if needed

L = label claim (mg/Capsule)

Tolerances: NLT 80% (Q) of the labeled amount of calcium acetate $(C_4H_6CaO_4)$ is dissolved.

Test 2: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 2.

Medium: 0.1 N hydrochloric acid; 900 mL

Apparatus 1: 100 rpm

Time: 15 min

Blank: 0.2% (v/v) nitric acid

Standard solutions: 4.0, 5.0, 6.0, 7.0, and 8.0 μg/mL of calcium [from commercially available, National

Institute of Standards and Technology (NIST) traceable standard solution for calcium] in Blank

Sample solution: Pass a portion of the solution under test through a suitable filter of 1.0-µm pore size. Dilute with *Blank* to a concentration similar to 6.0-µg/mL *Standard solution*, if necessary.

Instrumental conditions

(See <u>Atomic Absorption Spectroscopy (852)</u>.)

Mode: Atomic absorption spectrometry **Analytical wavelength:** 422.8 nm **Lamp:** Calcium hollow-cathode

Flame: Air-acetylene oxidizing flame

System suitability

Samples: Blank and Standard solutions

Suitability requirements

Linearity: Use the *Blank* to set the instrument to zero. Concomitantly determine the responses for each of the *Standard solutions*. Construct a linear calibration curve by plotting the absorbance values of the *Standard solutions* versus their corresponding concentrations, in micrograms per milliliter.

Correlation coefficient: NLT 0.995

Drift: Within ±2%, 7.0-μg/mL *Standard solution*. See <u>Atomic Absorption Spectroscopy (852), Procedure, Analysis</u>.

Analysis

Sample: Sample solution

From the linear calibration curve, determine the concentration (C), in μ g/mL, for calcium in the *Sample solution*.

Calculate the percentage of the labeled amount of calcium acetate $(C_4H_6CaO_4)$ dissolved:

Result = $C \times V \times F \times D \times (M_{r1}/M_{r2}) \times (1/L) \times 100$

C = concentration of calcium in the Sample solution determined (μ g/mL)

V = volume of Medium, 900 mL

F = equivalency factor, 0.001 mg/ μ g

D = dilution factor for the Sample solution, if needed

 M_{r1} = molecular weight of calcium acetate, 158.17

 M_{r2} = molecular weight of calcium, 40.08

L = label claim (mg/Capsule)

Tolerances: NLT 85% (Q) of the labeled amount of calcium acetate ($C_4H_6CaO_4$) is dissolved.

Test 3: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 3*.

Tier 1

Medium 1: Water; 900 mL

Apparatus 2: 100 rpm, with sinkers

Time: 15 min

Tier 2

Medium 2: Simulated gastric fluid TS; 900 mL

Apparatus 2: 100 rpm, with sinkers

Time: 15 min

Determine the amount of calcium acetate dissolved using *Analytical procedure 1* or *Analytical procedure 2* for *Tier 1* and *Analytical procedure 3* for *Tier 2*.

Sample stock solution: Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size.

Dissolution procedure: Perform the test using the conditions under *Tier 1*. In the presence of cross-linking, repeat the test with a new set of Capsules using the conditions under *Tier 2*.

Analytical procedure 1

Blank: 0.02 N nitric acid

Standard solutions: 2.4, 3.2, 4.0, 4.8, and 5.6 µg/mL of USP Calcium Acetate RS in Blank

Sample solution: Nominally 3.7 µg/mL of calcium acetate from Sample stock solution, dilute with Blank

if necessary

Instrumental conditions

(See Atomic Absorption Spectroscopy (852).)

Mode: Atomic absorption spectrometry
Analytical wavelength: 422.8 nm
Lamp: Calcium hollow-cathode
Flame: Nitrous oxide-acetylene

Replicates: 4

System suitability

Samples: Blank, Standard solutions, and Sample solution

Suitability requirements

Relative standard deviation: NMT 3.0% in 4 replicate measurements, *Standard solutions* and *Sample solution*

Correlation coefficient: NLT 0.995, use the *Blank* to set the instrument to zero. Concomitantly determine the responses for each of the *Standard solutions*. Construct a quadratic calibration curve by plotting the absorbance values of the *Standard solutions* versus their corresponding concentrations, in micrograms per milliliter.

Drift: Within $\pm 5\%$, the absorbance value of 5.6 µg/mL of <u>USP Calcium Acetate RS</u> from the Standard solutions. See <u>Atomic Absorption Spectroscopy (852), Procedure, Analysis</u>.

Analysis

Sample: Sample solution

From the quadratic calibration curve obtained from the *Correlation coefficient*, determine the concentration (C), in μ g/mL, for calcium acetate in the *Sample solution*.

Calculate the percentage of the labeled amount of calcium acetate $(C_4H_6CaO_4)$ dissolved:

Result =
$$C \times V \times F \times D \times (1/L) \times 100$$

C = concentration of calcium acetate in the Sample solution determined (μ g/mL)

V = volume of Medium 1,900 mL

F = equivalency factor, 0.001 mg/ μ g

D = dilution factor for the Sample solution, if needed

L = label claim (mg/Capsule)

Analytical procedure 2

Titrimetric system

(See <u>Titrimetry (541)</u>.)

Mode: Complexometric titration **Titrant:** 0.005 M edetic acid (EDTA)

Endpoint detection: Photometric at 610 nm

Analysis: To an aliquot of the *Sample stock solution* equivalent to about 7.4 mg of calcium acetate, add 60 mL of 0.1 N <u>sodium hydroxide</u> and 0.2 g of hydroxynaphthol blue indicator. Titrate with *Titrant*, determining the endpoint photometrically using a suitable autotitrator.

Calculate the percentage of the labeled amount of calcium acetate $(C_4H_6CaO_4)$ dissolved:

Result =
$$V_S \times M \times F \times (V_M/V_A) \times (1/L) \times 100$$

 V_S = volume of *Titrant* consumed by the aliquot of *Sample stock solution* (mL)

M = actual Titrant concentration, in molarity (mmol/mL)

F = equivalency factor of calcium acetate, 158.17 mg/mmol

 V_M = volume of *Medium 1*, 900 mL

 V_A = volume of the aliquot taken for *Analysis* (mL)

L = label claim (mg/Capsule)

Analytical procedure 3

Blank: Medium 2
Titrimetric system
(See Titrimetry (541).)

Mode: Complexometric titration **Titrant:** 0.005 M <u>edetic acid</u> (EDTA)

Endpoint detection: Visual

Analysis: To an aliquot of the *Sample stock solution* equivalent to about 7.4 mg of calcium acetate, add 50 mL of water, 10 mL of 0.1 N sodium hydroxide, and 0.2 g of hydroxynaphthol blue indicator. Titrate with *Titrant* to a blue endpoint while stirring using a magnetic stirring bar. Perform a *Blank* determination in the same manner.

Calculate the percentage of the labeled amount of calcium acetate $(C_AH_6CaO_A)$ dissolved:

Result = $(V_S - V_B) \times M \times F \times (V_M/V_A) \times (1/L) \times 100$

 V_S = volume of *Titrant* consumed by the aliquot of *Sample stock solution* (mL)

 V_B = volume of *Titrant* consumed by the *Blank* (mL)

M = actual Titrant concentration, in molarity (mmol/mL)

F = equivalency factor of calcium acetate, 158.17 mg/mmol

 V_M = volume of *Medium 2*, 900 mL

 V_A = volume of the aliquot taken for *Analysis* (mL)

L = label claim (mg/Capsule)

Tolerances: NLT 85% (Q) of the labeled amount of calcium acetate ($C_4H_6CaO_4$) is dissolved.

Test 4: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 4*.

Medium: Water; 900 mL, deaerated

Apparatus 2: 50 rpm, with appropriate sinkers, if necessary (RB 1-Dec-2020)

Time: 20 min

Solution A: 0.07% (v/v) phosphoric acid in water **Mobile phase:** Methanol and Solution A (5:95)

Standard solution: 0.74 mg/mL of <u>USP Calcium Acetate RS</u> in *Medium*

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size.

Chromatographic system

(See <u>Chromatography (621), System Suitability</u>.)

Mode: LC

Detector: UV 202 nm

Column: 4.6-mm × 25-cm; 5-µm packing L1

Flow rate: 1 mL/min Injection volume: 10 µL

Run time: NLT 2 times the retention time of the acetate peak

System suitability

Sample: Standard solution **Suitability requirements**

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of calcium acetate $(C_4H_6CaO_4)$ dissolved:

Result =
$$(r_U/r_S) \times C_S \times V \times (1/L) \times 100$$

 r_{II} = peak response of acetate from the Sample solution

 $r_{\rm S}$ = peak response of acetate from the *Standard solution*

 C_S = concentration of <u>USP Calcium Acetate RS</u> in the *Standard solution* (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim (mg/Capsule)

Tolerances: NLT 85% (Q) of the labeled amount of calcium acetate ($C_4H_6CaO_4$) is dissolved.

• **UNIFORMITY OF DOSAGE UNITS** (905): Meet the requirements

SPECIFIC TESTS

• MICROBIAL ENUMERATION TESTS (61) and TESTS FOR SPECIFIED MICROORGANISMS (62): The total aerobic microbial count does not exceed 10^3 cfu/g, and the total combined molds and yeast count does not exceed 10^2 cfu/g. It meets the requirements of the test for the absence of Escherichia coli.

ADDITIONAL REQUIREMENTS

- PACKAGING AND STORAGE: Preserve in well-closed containers and store at controlled room temperature.
- **LABELING:** When more than one *Dissolution* test is given, the labeling states the *Dissolution* test used only if *Test 1* is not used.
- USP REFERENCE STANDARDS $\langle 11 \rangle$

USP Calcium Acetate RS

Page Information:

Not Applicable

DocID:

© 2020 The United States Pharmacopeial Convention All Rights Reserved.